Guide d’enseignement efficace des mathématiques de la 4e à la 6e année

Numération et sens du nombre

Fascicule 2

Fractions

2008
Guide d’enseignement efficace des mathématiques, de la 4e à la 6e année

Numération et sens du nombre

Fascicule 2 : Fractions

Le Guide d’enseignement efficace des mathématiques, de la 4e à la 6e année – Numération et sens du nombre est réparti en trois fascicules : Nombres naturels, Fractions et Nombres décimaux et pourcentages. Ce second fascicule, Fractions, comprend notamment une introduction, une description de la grande idée Sens du nombre et une de la grande idée Sens des opérations détaillées à la lumière des fractions ainsi qu’une situation d’apprentissage pour chaque année d’études au cycle moyen.
Guide d’enseignement efficace des mathématiques
de la 4e à la 6e année

Numération et sens du nombre
Fascicule 2
Fractions
Table des matières

Préface

3

Introduction

5

Enseignement efficace de la numération

7

- Communication .. 8
- Rôle des représentations dans l’apprentissage des mathématiques 9
- Modèles mathématiques .. 10
- Enseignement par la résolution de problèmes .. 13
- Échelles de développement du sens du nombre et du sens des opérations 15
- Grandes idées .. 21

Grandes idées en numération et sens du nombre

23

- Aperçu .. 23

Grande idée 1 – Sens du nombre

26

- Aperçu .. 26
- Énoncé 1 – Quantité représentée par un nombre ... 28
 - Difficultés encourues par les élèves ... 29
 - Contexte ... 31
 - Concept de fraction ... 33
 - Représentation mentale .. 35
 - Autres concepts associés à la notation fractionnaire \(\frac{a}{b} \) 36
 - Division ... 36
 - Rapport .. 37
 - Opérateur ... 37
 - Approximation ... 38
 - Estimation ... 38
 - Arrondissement .. 40
 - Annexe – Ensembles de nombres ... 41
- Énoncé 2 – Relations entre les nombres .. 44
 - Relations d’ordre ... 44
 - Comparaison de fractions en les représentant concrètement ou semi-concrètement .. 46
 - Comparaison de fractions ayant un dénominateur commun 46
 - Comparaison de fractions ayant un numérateur commun 47
 - Comparaison de fractions en utilisant des fractions repères 47
 - Comparaison de fractions en utilisant d’autres aspects du sens de la fraction 48
Relations d’égalité ... 50
Fractions équivalentes ... 50
Nombre fractionnaire et fraction impropre .. 53
Relations entre des nombres exprimés sous différentes formes ... 55
Énoncé 3 – Représentations des nombres .. 57
Exploration de fractions .. 58
Situations propices à l’exploration de fractions ... 60
Représentations à l’aide de modèles ... 62
Modèle de surface .. 62
Modèle de longueur .. 64
Modèle d’ensemble ... 66
Limites des modèles de fractions .. 70
Représentations à l’aide de mots ... 71
Représentations symboliques .. 71

GRANDE IDÉE 2 – SENS DES OPÉRATIONS 72
Aperçu ... 72
Énoncé 1 – Quantité dans les opérations ... 74
Apprentissage des opérations fondamentales .. 74
Nature des opérations fondamentales ... 76
Addition et soustraction ... 77
Multiplication ... 78
Division .. 79
Estimation du résultat d’une opération ... 82
Énoncé 2 – Relations entre les opérations .. 84
Liens entre les opérations sur les nombres naturels et celles sur les fractions 85
Calcul mental .. 87
Énoncé 3 – Représentations des opérations ... 90
Addition et soustraction .. 92
Multiplication .. 95
Division ... 97

ÉTABLIR DES LIENS 103
Liens avec des expériences de la vie quotidienne ... 103
Liens avec des concepts dans les autres domaines de mathématiques 106
Liens avec des concepts dans les autres matières .. 108
Liens avec des professions ... 110

CHEMINEMENT DE L’ÉLÈVE 113
Tableau de progression 1 – Vocabulaire .. 114
Tableau de progression 2 – Habiletés ... 115

SITUATIONS D’APPRENTISSAGE 117
Aperçu ... 117
Situation d’apprentissage, 4e année ... 119
Situation d’apprentissage, 5e année ... 147
Situation d’apprentissage, 6e année ... 171

RÉFÉRENCES 188
Le document intitulé *Enseigner et apprendre les mathématiques : Rapport de la Table ronde des experts en mathématiques de la 4e à la 6e année* souligne que « l’enseignement joue un rôle central dans l’apprentissage et la compréhension des mathématiques chez les élèves du cycle moyen » (Ministère de l’Éducation de l’Ontario, 2004a, p. 35) et il en définit les principales composantes. Pour appuyer la mise en œuvre des recommandations présentées dans ce rapport, le ministère de l’Éducation de l’Ontario a entrepris l’élaboration d’une série de guides pédagogiques composée d’un guide principal et de guides d’accompagnement.

Les **guides d’accompagnement**, rédigés par domaine en tenant compte des attentes et des contenus d’apprentissage du programme-cadre de mathématiques, suggèrent des applications pratiques des principes et des fondements présentés dans le guide principal. Ils sont conçus pour aider l’enseignant ou l’enseignante à s’approprier la pédagogie propre à chaque domaine mathématique afin d’améliorer le rendement des élèves en mathématiques.

1. Dans le présent document, parents désigne père, mère, tuteur et tutrice.
INTRODUCTION

Pour réussir dans le monde d'aujourd'hui, nous devons avoir une excellente compréhension conceptuelle des mathématiques. Chaque jour, nous sommes bombardés de nombres, de statistiques, de publicités et de données, à la radio, à la télévision et dans les journaux. Nous avons besoin d'une certaine aptitude mentale et d'un solide sens du nombre pour évaluer les publicités, estimer des quantités, calculer efficacement avec les nombres afin de composer avec le quotidien et de juger si ces calculs sont appropriés.

(Fosnot et Dolk, 2001, p. 98, traduction libre)

Les nombres et les opérations jouent un rôle de premier plan dans l’apprentissage des mathématiques, puisque pour maîtriser divers concepts mathématiques, les élèves s’appuient sur la compréhension qu’ils en ont. En plus d’être directement reliés aux autres domaines, les nombres et les opérations sont utilisés quotidiennement par tout le monde. C’est pourquoi, historiquement, le domaine Numération et sens du nombre est au cœur de l’apprentissage des mathématiques.

Cependant, l’apprentissage des nombres et des opérations a évolué au fil du temps. La numération et le sens du nombre, c’est plus que :

• l’application d’algorithmes et de procédures;
• la recherche de la bonne réponse;
• des séries d’exercices arithmétiques.

La numération et le sens du nombre, au cycle moyen, c’est :

• la compréhension des nombres et des quantités qu’ils représentent;
• l’établissement de liens entre les concepts numériques;
• l’utilisation de stratégies comprises et efficaces pour calculer dans divers contextes.
Parmi les nombreux éléments qui contribuent à l’efficacité de l’enseignement des mathématiques, certains ont une incidence plus grande que d’autres. Le présent guide est rédigé en tenant compte plus particulièrement de quatre de ces éléments, soit la communication, l’enseignement par la résolution de problèmes, les échelles de développement du sens du nombre et du sens des opérations et les grandes idées.
La communication est un élément essentiel dans l'apprentissage des mathématiques. C'est une habileté qui va au-delà de l'utilisation appropriée de la terminologie et des symboles mathématiques dans une communication verbale ou écrite. C'est aussi, de façon plus importante, un véhicule par lequel les élèves acquièrent une compréhension des concepts mathématiques dans des contextes qui font appel à des raisonnements et à des arguments mathématiques. C'est ce que Radford et Demers (2004) appellent la dimension conceptuelle de la communication.

Ces chercheurs soulignent aussi l'importance de prendre en compte la dimension sociale de la communication. En effet, qui dit « communication » dit « échange » entre deux personnes ou plus. L'échange sera profitable pour toutes les personnes impliquées, dans la mesure où il règne au sein du groupe un climat propice au dialogue et une culture de respect et d'écoute.

(2. Pour plus de détails au sujet de la communication, consulter le Guide d'enseignement efficace des mathématiques, de la maternelle à la 6e année, fascicule 2 (Ministère de l’Éducation de l’Ontario, 2006, p. 79-114).
Pour accroître l’efficacité de l’enseignement de la numération, l’enseignant ou l’enseignante doit favoriser l’émergence d’une culture qui valorise la communication comme moyen d’appropriation du savoir. On doit donc créer des occasions propices aux échanges entre les élèves afin de les pousser à préciser leurs raisonnements et leurs stratégies. La communication est au centre de toutes les situations d’apprentissage proposées dans le présent guide.

RÔLE DES RÉPRÉSENTATIONS DANS L’APPRENTISSAGE DES MATHÉMATIQUES

En mathématiques, la communication n’est pas uniquement une affaire de mots. Les idées doivent être véhiculées au moyen de différents modes : concrètement (p. ex., avec des cubes emboîtables), semi-concrètement (p. ex., avec une droite graduée ou une illustration), symboliquement (p. ex., en utilisant des chiffres et des symboles mathématiques dans une équation) et, bien sûr, verbalement, à l’aide de mots, qu’ils soient lus, vus, dits, écrits ou entendus.

Ces divers modes de représentation présentés dans le schéma ci-après permettent d’exploiter plusieurs entrées cognitives, établissant ainsi des liens entre les idées, liens indispensables à l’apprentissage. L’enseignant ou l’enseignante utilise des modèles pour représenter des concepts mathématiques aux élèves qui, à leur tour, s’en servent pour résoudre des problèmes et clarifier leur pensée.

Un élément important dans l’enseignement du sens du nombre est la quantité remarquable d’interactions verbales en classe. Encourager les élèves à parler et à partager leurs idées les aide à établir des liens entre ces idées pour leur propre bénéfice et pour celui de leurs pairs.

(Van de Walle et Bowman Watkins, 2003, p. 146, traduction libre)

L’enseignement des mathématiques est plus efficace lorsqu’on comprend l’effet des représentations externes sur l’apprentissage. Pour cela, nous devons être capables de discuter des représentations internes des élèves – le sens qu’ils y donnent, les relations qu’ils établissent et la manière dont ils joignent ces représentations les unes avec les autres.

(Goldin et Shteingold, 2001, p. 19, traduction libre)
MODÈLES MATHÉMATIQUES

Depuis longtemps, les mathématiciens et les mathématiciennes construisent des modèles pour expliquer et représenter des découvertes et des observations du monde et pour les communiquer efficacement. Par exemple, en pensant à un nombre, certains le visualisent dans un modèle mathématique tel que la droite numérique ouverte ou une grille de nombres. Cela aide à mieux cerner le nombre et à reconnaître qu’il est plus que…, moins que… ou près de… un autre nombre. Les modèles sont donc des représentations d’idées mathématiques.

Un ou une jeune enfant visualise le monde qui l’entoure à sa façon. Pour dessiner l’arbre devant sa maison, il trace des lignes sur du papier et le représente en deux dimensions, et ce, même s’il l’a touché, en a fait le tour et s’est abrité sous ses branches (Fosnot et Dolk, 2001, p. 74). Cette représentation n’est pas une copie de l’arbre, mais bien une construction de ce qu’il connaît. C’est en fait « un modèle » de l’arbre. Il en va de même pour les élèves dont les premiers modèles utilisés pour résoudre des problèmes reflètent leur interprétation de la réalité.

Toujours selon Fosnot et Dolk (2001, p. 80), les modèles, tout comme les grandes idées et les stratégies, ne peuvent être transmis automatiquement, mais font l’objet d’une réappropriation et d’une construction de la part des élèves. La table de valeurs en est un bon exemple : intuitivement, les élèves « organisent » les données numériques en les plaçant de façon disparate sur une feuille, mais la table de valeurs permet de les ordonner en vue de les traiter et de les analyser.

Cependant, une précision au sujet des modèles et du matériel de manipulation est de mise : le modèle n’est pas l’idée mathématique. De ce fait, l’arbre que l’enfant a dessiné, dans l’exemple plus haut, n’est pas un arbre, mais une modélisation de la situation qui servira à en discuter. Il en va de même de tous les modèles employés.

Le matériel de base dix est un modèle, car il suppose que l’utilisateur ou l’utilisatrice possède déjà une compréhension du concept de regroupement. Cependant, présenter une languette d’une trousse de matériel de base dix () et affirmer qu’il s’agit d’une dizaine est faux. L’objet n’est pas une « dizaine », mais un moyen concret de représenter « l’idée » de la dizaine. Ici, il représente une dizaine de petits cubes, mais il pourrait représenter une unité, un arbre ou même une poutre. Selon l’intention, il pourrait aussi représenter un dixième, par exemple, en représentant le nombre 2,5 avec 2 planchettes (2 unités) et 5 languettes (5 dixièmes).
La droite numérique est un autre modèle auquel les élèves doivent être exposés. La droite numérique ne représente pas la quantité correspondant aux nombres qui sont placés sur cette droite; elle permet de « voir » les nombres en relation les uns avec les autres. Par exemple, une droite numérique sur laquelle les nombres 44, 42, 41,5 sont placés représente la relation d’ordre entre ces trois nombres.

Dans le but de favoriser le raisonnement des élèves, l’enseignant ou l’enseignante doit utiliser divers modèles et les inciter à faire de même. Les modèles ne devraient pas nécessairement faire l’objet d’un enseignement formel; ils peuvent être présentés dans le cadre de situations de résolution de problèmes. Par exemple, la droite numérique est un excellent modèle pour explorer l’addition de plusieurs nombres. Cependant, la majorité des élèves ne « conçoivent » pas qu’elle puisse être créée sans qu’elle soit graduée. Imaginons alors un échange mathématique, dans le cadre d’un problème d’addition, où ils présentent leurs stratégies de résolution de problèmes. L’enseignant ou l’enseignante pourra en profiter pour faire un lien entre la droite numérique utilisée par un ou une élève (Figure 1) pour effectuer une opération et la possibilité d’utiliser une droite numérique ouverte (Figure 2).

Exemple

\[5 + 3 + 10\]

De même, afin de représenter des situations impliquant des fractions, les élèves tendent souvent à utiliser un modèle de surface (p. ex., cercle ou rectangle). Cependant, ce type de modèle ne permet pas de représenter fidèlement des situations où le tout est une longueur ou une distance. L’enseignant ou l’enseignante peut alors profiter d’une occasion où les élèves utilisent un modèle de surface pour représenter la fraction d’une longueur et leur montrer comment un modèle de longueur (p. ex., segment de droite) serait plus approprié.
Les élèves doivent être exposés à une multitude de représentations pour être en mesure d’établir des liens entre elles et consolider leur apprentissage. Au cours de leur scolarisation, ils doivent vivre une transition à partir de l’utilisation d’un modèle comme outil didactique dans une situation particulière vers l’utilisation d’un modèle comme stratégie pour généraliser des idées mathématiques, pour résoudre des problèmes et pour appliquer le modèle à de nouveaux contextes.

Cette transition d’un contexte familier à un nouveau contexte constitue une étape fondamentale dans l’apprentissage des mathématiques. Elle se retrouve dans la grille d’évaluation du rendement du programme-cadre de mathématiques, sous la compétence « Mise en application ».

Voici quelques modèles que les élèves peuvent utiliser en numération et sens du nombre :

- la droite numérique;
- la droite numérique ouverte;
- la disposition rectangulaire;
- la table de valeurs;
- la grille de nombres;
- le matériel de base dix;
- l’équation;
- le modèle de surface pour représenter des fractions;
- le modèle de longueur pour représenter des fractions;
- le modèle d’un ensemble pour représenter des fractions;
- la monnaie pour représenter des nombres décimaux.
Enseignement par la résolution de problèmes

L'activité de résolution de problèmes et l'apprentissage sont intimement liés; les élèves apprennent les mathématiques en faisant des mathématiques.

(Van de Walle et Folk, 2005, p. 44, traduction libre)

Afin d'aider les élèves à bien comprendre les concepts et les processus en numération et sens du nombre, il est important de les placer en situation de résolution de problèmes dès le début d’une unité d’apprentissage. Lorsqu’ils travaillent en équipe à résoudre un problème engageant et non routinier, les élèves deviennent habiles à formuler une hypothèse et un argument mathématique. Ils apprennent aussi à prendre des risques, à persévérer et à avoir confiance en leur capacité à résoudre des problèmes. C’est dans un tel contexte que l’apprentissage des mathématiques prend tout son sens.

L’enseignement par la résolution de problèmes exige que l’enseignant ou l’enseignante présente des situations d’apprentissage qui soutiennent l’intérêt des élèves. Le contexte ou la situation du problème devient alors un facteur déterminant. « Les problèmes proposés devraient partir de contextes réels (c’est-à-dire

des situations qui se produisent de façon authentique en salle de classe), de contextes réalistes (c'est-à-dire des situations qui sont issues d'expériences qui pourraient être vécues par les élèves à l'extérieur de la salle de classe) et même de contextes fantaisistes (c'est-à-dire des situations qui font appel à l'imaginaire des élèves) » (Vézina et coll., 2006, p. 4). De fait, le contexte peut être un élément accrocheur pour les élèves et leur donne une raison de « faire des mathématiques ». Conséquemment, le contexte doit être choisi, formulé et façonné judicieusement, afin de toucher leur sensibilité. Le contexte est donc un élément de la résolution de problèmes qui peut être utilisé afin de susciter l'intérêt des élèves, notamment les garçons et les élèves ayant des besoins particuliers.

L’enseignement par la résolution de problèmes exige aussi que l'enseignant ou l'enseignante présente aux élèves des situations d'apprentissage riches en contenu mathématique qui les incitent à réfléchir. Il ou elle doit ensuite laisser les élèves élaborer leurs propres stratégies de résolution de problèmes sans trop les diriger. Enfin, l'enseignant ou l'enseignante doit clarifier les concepts mathématiques lorsque les élèves présentent leurs stratégies et leurs solutions lors de l'échange mathématique. L'échange mathématique est en quelque sorte un temps d'objectivation au cours duquel les élèves expliquent et défendent leur raisonnement et analysent celui des autres. L'apprentissage et la compréhension se forgent grâce à cette confrontation d'idées et à un questionnement efficace de la part de l'enseignant ou de l'enseignante. En outre, l'échange mathématique permet aux élèves de consolider leurs apprentissages et de développer diverses habiletés telles que l'habileté à résoudre des problèmes, à communiquer, à raisonner, à écouter et à analyser. Pour plus de détails au sujet de l'échange mathématique, consulter le Guide d'enseignement efficace des mathématiques, de la maternelle à la 6e année, fascicule 3 (Ministère de l'Éducation de l'Ontario, 2006, p. 44-45). L'enseignement par la résolution de problèmes est axé sur la compréhension. En numération et sens du nombre, les élèves résoudront des problèmes pour acquérir un meilleur sens des opérations, lequel se traduira par l'emploi de stratégies comprises et non par l'emploi d'étapes mémorisées et appliquées aveuglément. Toutes les situations d'apprentissage présentées dans le présent guide se prêtent à un enseignement par la résolution de problèmes.
Échelles de développement du sens du nombre et du sens des opérations

Les échelles de développement permettent à l’enseignant ou à l’enseignante de déterminer les étapes que les élèves ont franchies dans l’apprentissage des nombres et des opérations et de mieux cerner les prochaines étapes à franchir.

(Small, 2005b, p. 2, traduction libre)

Le développement des connaissances et des habiletés des élèves en numération et sens du nombre s’effectue progressivement; il est caractérisé par un approfondissement graduel du sens du nombre et du sens des opérations qui s’échelonne sur l’ensemble des années d’études au palier élémentaire.

Les tableaux qui suivent proposent une échelle de développement du sens du nombre (Tableau 1) et une échelle de développement du sens des opérations (Tableau 2). Chaque échelle décrit un continuum de développement en cinq étapes qui va de l’initiation à la polyvalence comme illustré dans le schéma ci-dessus.
Ce continuum, qui reflète un cheminement du concret vers l’abstrait, est fondé sur les trois prémisses suivantes :

1. Les élèves doivent passer par toutes les étapes pour chaque nouveau concept. S’ils escamotent certaines étapes, il leur sera difficile de développer pleinement le sens du nombre et le sens des opérations jusqu’à l’étape de la polyvalence. Par contre, au fil des années et selon leur bagage d’expériences, ils seront en mesure de passer par les premières étapes de plus en plus rapidement.

2. Le parcours à travers ces étapes ne se fait pas exclusivement de façon unidirectionnelle. Au contraire, selon les situations d’apprentissage auxquelles ils doivent faire face, les élèves peuvent avoir besoin de revenir à une étape précédente pour consolider leurs acquis.

3. Les étapes ne forment pas des ensembles disjoints. Il y a une zone d’intersection entre deux étapes consécutives et les élèves peuvent se situer dans cette zone en ce qui a trait à la compréhension d’un concept particulier.

Dans chacun des tableaux, les étapes sont définies brièvement et sont accompagnées de quelques exemples de comportements observables qui servent à en préciser le sens. L’enseignant ou l’enseignante peut utiliser ces tableaux dans le cadre d’une évaluation diagnostique ou formative pour déterminer l’étape à laquelle les élèves se situent par rapport à un concept particulier. Il ou elle pourra alors planifier des situations d’apprentissage qui correspondent à la zone proximale de développement des élèves et qui permettront à ces derniers de poursuivre leur cheminement vers l’étape suivante. La progression d’une étape à l’autre est tributaire de la pertinence des activités d’apprentissage et des échanges mathématiques vécus en classe. Autrement dit, plus les élèves vivront des expériences signifiantes, plus leur compréhension sera aiguisée et claire.

Note : Il importe de souligner que les cinq étapes dans ces deux tableaux ne sont aucunement liées aux années d’études ou aux niveaux de rendement de la grille d’évaluation présentée dans le programme-cadre de mathématiques.

Le tableau 1 qui suit décrit les étapes de développement du sens du nombre. Il importe de retenir que le mot « nombre » dans ce tableau comprend à la fois les nombres naturels, les fractions et les nombres décimaux. Lorsqu’un ensemble de nombres est l’objet d’étude pour la première fois, les élèves se situent généralement à l’étape 1. Par exemple, lorsque les élèves de 4e année amorcent l’étude des nombres décimaux, ils se situent à l’étape 1 pour cet ensemble de nombres. Par contre, ils peuvent être à l’étape 3 en ce qui a trait aux nombres naturels.
<table>
<thead>
<tr>
<th>Étapes</th>
<th>Exemples de comportements observables</th>
</tr>
</thead>
</table>
| **Étape 1 – Initiation**
Compréhension intuitive de la quantité représentée par certains nombres | L’élève :
- reconnaît des représentations symboliques, concrètes, semi-concrètes et en mots de certains nombres (p. ex., 0 à 10, $\frac{1}{2}$, 0,5), ainsi que la quantité qu’ils représentent. |
| **Étape 2 – Représentation concrète**
Habileté à représenter des nombres de façon concrète | L’élève :
- estime des quantités d’objets données;
- utilise des regroupements afin de comprendre les quantités exprimées (p. ex., 10 dizaines = 1 centaine, 4 quarts = 1 entier, 10 centièmes = 1 dixième);
- reconnaît, compare, représente et utilise des quantités (p. ex., quantités représentées par les nombres de 1 à 100, par des fractions simples dont le dénominateur est généralement inférieur à 12 et par des nombres décimaux aux centièmes);
- reconnaît et détermine des représentations équivalentes de nombres en utilisant du matériel concret (p. ex., 153 = 150 + 3, $\frac{2}{4}$ = $\frac{1}{2}$, $\frac{2}{10}$ = 0,2 et 0,30 = 0,3). |
| **Étape 3 – Formalisation**
Compréhension de la quantité représentée par les nombres et des représentations symboliques équivalentes à cette quantité | L’élève :
- utilise régulièrement des repères pour établir des relations entre les nombres;
- compare les nombres en utilisant leur représentation symbolique (p. ex., à l’aide de la valeur de position, en utilisant le sens de la fraction);
- reconnaît l’équivalence entre des représentations symboliques (p. ex., $\frac{8}{12} = \frac{2}{3} : \frac{1}{4} = 25 \%$, $\frac{75}{100} = 0,75 = 0,7 + 0,05$);
- reconnaît la différence entre une estimation et une valeur exacte. |
| **Étape 4 – Consolidation**
Facilité à utiliser les relations entre les nombres dans une variété de situations | L’élève :
- utilise, compare, reconnaît et décrit les nombres indépendamment de la notation utilisée;
- utilise des équivalences entre diverses notations d’une quantité (p. ex., nombre naturel, fraction propre, fraction impropre, nombre fractionnaire, nombre décimal, pourcentage) pour résoudre des problèmes;
- détermine avec exactitude ou approximativement la valeur d’une quantité, selon le contexte, en utilisant diverses stratégies;
- a une compréhension des principes sous-jacents aux notations (p. ex., système de valeur de position applicable aux nombres naturels et aux nombres décimaux, le rôle du numérateur et du dénominateur afin de déterminer la grandeur d’une fraction). |
| **Étape 5 – Polyvalence**
Habileté à Manipuler les nombres avec souplesse | L’élève :
- reconnaît naturellement la grandeur relative des nombres;
- choisit et utilise la représentation d’un nombre la plus appropriée pour une situation donnée. |
Le tableau 2 qui suit décrit les étapes de développement du sens des opérations. Il importe de lier le sens des opérations à l’ensemble de nombres avec lequel les élèves effectuent les opérations. Par exemple, un ou une élève peut être en mesure d’effectuer les opérations de base avec les fractions à l’aide de matériel concret (étape 2) tout en étant capable d’effectuer les opérations de base avec les nombres naturels en utilisant des stratégies personnelles (étape 3). La progression d’une étape à l’autre peut aussi se faire à un rythme différent selon les opérations. Ainsi, un ou une élève peut, par exemple, être à l’étape 4 avec les opérations d’addition et de soustraction de nombres naturels, mais à l’étape 3 avec les opérations de multiplication et de division de ces mêmes nombres.
<table>
<thead>
<tr>
<th>Étapes</th>
<th>Exemples de comportements observables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Étape 1 – Initiation
Compréhension intuitive du sens des opérations arithmétiques de base</td>
<td>L’élève :
• associe chacune des opérations de base à une action (p. ex., l’addition à un ajout, la soustraction à un retrait, la multiplication à la réunion de groupes égaux et la division à un partage en groupes égaux).</td>
</tr>
<tr>
<td>Étape 2 – Représentation concrète
Habileté à effectuer concrètement les opérations</td>
<td>L’élève :
• effectue les opérations à l’aide de matériel concret;
• reconnaît quelques relations entre les opérations (p. ex., la soustraction est l’opération inverse de l’addition);
• possède et utilise un répertoire limité de faits numériques de base;
• peut anticiper l’ordre de grandeur du résultat d’une opération.</td>
</tr>
<tr>
<td>Étape 3 – Formalisation
Habileté à effectuer les opérations en utilisant des stratégies personnelles et des algorithmes usuels</td>
<td>L’élève :
• reconnaît la ou les opérations à effectuer pour résoudre des problèmes simples;
• possède et utilise une variété de stratégies pour effectuer les opérations et évalue la vraisemblance du résultat;
• connaît et utilise les faits numériques de base;
• effectue mentalement des calculs simples;
• reconnaît certaines des propriétés des opérations.</td>
</tr>
<tr>
<td>Étape 4 – Consolidation
Facilité à utiliser efficacement les opérations dans une variété de situations</td>
<td>L’élève :
• résout des problèmes complexes avec les opérations;
• utilise le raisonnement proportionnel pour résoudre des problèmes simples;
• possède un grand répertoire de stratégies de dénombrement, de comparaison, d’estimation et de calcul;
• choisit une stratégie de calcul appropriée dans une situation donnée (p. ex., recours au calcul mental, à un algorithme usuel ou personnel, à la calculatrice ou à l’ordinateur);
• distingue les situations qui nécessitent une réponse approximative de celles qui nécessitent une réponse exacte;
• comprend et utilise les propriétés des opérations.</td>
</tr>
<tr>
<td>Étape 5 – Polyvalence
Habileté à utiliser les opérations avec souplesse</td>
<td>L’élève :
• choisit la notation des nombres la plus appropriée en fonction de l’opération à effectuer (p. ex., $\frac{3}{4}$, 0,75 ou 75 %);
• utilise le raisonnement proportionnel pour résoudre des problèmes complexes;
• choisit naturellement une stratégie de calcul efficace et peut justifier le choix et l’efficience de la stratégie utilisée.</td>
</tr>
</tbody>
</table>
Au cycle primaire, les élèves acquièrent généralement une compréhension des nombres naturels et des quatre opérations de base sans toutefois saisir pleinement toute la complexité de ces concepts. Le développement du sens du nombre et du sens des opérations se poursuit aux cycles moyen et intermédiaire avec l’étude des grands nombres naturels, des fractions et des nombres décimaux.

À la fin du cycle moyen, les élèves n’auront pas atteint l’étape de la polyvalence pour tous les concepts liés aux nombres ou aux opérations. La progression se poursuit en 7e et 8e année, et ce, particulièrement en ce qui a trait aux fractions, aux rapports et aux nombres décimaux. L’objectif à long terme de l’enseignant ou de l’enseignante est de consolider la compréhension des élèves et de les amener à faire preuve de plus de souplesse dans l’utilisation des nombres et des opérations.
Grandes idées

Lorsque les enseignantes et enseignants disposent d’un programme-cadre structuré, axé sur les concepts essentiels en mathématiques et, en outre, fondé sur les grandes idées, ils peuvent déterminer la composition de leçons susceptibles de favoriser l’apprentissage de ces concepts mathématiques importants.

(Ministère de l’Éducation de l’Ontario, 2004a, p. 21)

Les attentes et les contenus d’apprentissage du programme-cadre de mathématiques font appel à un grand nombre de concepts. Les grandes idées permettent à l’enseignant ou l’enseignante de voir comment ces concepts peuvent être regroupés pour planifier une programmation plus efficace de l’enseignement. Ce faisant, l’enseignant ou l’enseignante est en mesure d’élaborer des situations d’apprentissage cohérentes qui permettent aux élèves :

• d’explorer les concepts en profondeur;
• d’établir des liens entre les différents concepts;
• de reconnaître que les mathématiques forment un tout cohérent et non un éventail de connaissances disparates.

Dans les sections suivantes, les deux grandes idées en numération et sens du nombre sont étayées chacune par trois énoncés. Ces deux grandes idées représentent les fondements de l'apprentissage en numération et sens du nombre et sont abordées en fonction des nombres naturels (fascicule 1), des fractions (fascicule 2) et des nombres décimaux et des pourcentages (fascicule 3).
GRANDES IDÉES EN NUMÉRATION ET SENS DU NOMBRE

Le fait de relier la connaissance des contenus mathématiques à un nombre restreint de grandes idées permet de développer une compréhension solide des mathématiques.

(Charles, 2005, p. 10, traduction libre)

Aperçu

Les deux grandes idées qui constituent la base des attentes du domaine Numération et sens du nombre de la 4e à la 6e année sont le sens du nombre et le sens des opérations.
Grande idée 1 – Sens du nombre
Le sens du nombre permet de comprendre les nombres qui nous entourent et de les traiter avec discernement.

Énoncé 1 – Quantité représentée par un nombre
Comprendre la quantité, c’est développer un sens du « nombre-de… » ou encore du « combien-il-y-a-de… ».

Énoncé 2 – Relations entre les nombres
Établir des relations, c’est reconnaître des liens entre les nombres afin de mieux en saisir le sens.

Énoncé 3 – Représentations des nombres
Passer d’une représentation d’un nombre à une autre permet de mieux comprendre les nombres.

Grande idée 2 – Sens des opérations
Le sens des opérations permet de choisir les opérations à effectuer et de les exécuter efficacement selon la situation donnée.

Énoncé 1 – Quantité dans les opérations
Comprendre les opérations permet d’en reconnaître les effets sur les quantités.

Énoncé 2 – Relations entre les opérations
Comprendre les propriétés des opérations et les relations entre ces opérations permet de les utiliser avec plus de souplesse.

Énoncé 3 – Représentations des opérations
Connaître une variété de stratégies pour effectuer les opérations permet de les utiliser avec efficacité selon le contexte.

Les deux grandes idées sont à la fois complémentaires et interdépendantes, l’une ne pouvant exister sans l’autre. Avoir le sens du nombre, c’est comprendre les nombres, ce qu’ils représentent. Cette compréhension est essentielle pour saisir ce qui arrive aux nombres en cours d’opérations. L’objectif du domaine Numération et sens du nombre est de faire en sorte que les élèves utilisent leur sens du nombre en relation avec leur sens des opérations pour résoudre des problèmes.

Chacune des grandes idées est explorée en fonction d’énoncés de thématique similaire : quantité, relation et représentation. La similitude des énoncés n’est pas un hasard. En effet, les énoncés permettent de reconnaître les notions essentielles dans l’apprentissage de la numération, soit comprendre la quantité, c’est-à-dire le combien, reconnaître des relations entre les nombres et les opérations et enfin, démontrer de la souplesse dans la représentation et l’utilisation des nombres et des opérations.

En numération et sens du nombre, les élèves utilisent des modèles pour donner un sens aux nombres et aux opérations. Au cœur des modèles se retrouve le sens du nombre, c’est-à-dire la représentation de relations entre les nombres et le développement des processus fondamentaux. Pour plus de détails, voir Modèles mathématiques (p. 10-12).
L’enseignement en numération et sens du nombre, basé sur les grandes idées, vise à créer des liens et à développer une vision plus globale des nombres. Précisons que ces grandes idées ainsi que leurs énoncés ne se limitent pas à un ensemble de nombres. Par exemple, le fait qu’un nombre peut être représenté de différentes façons n’est pas le propre des nombres décimaux, mais s’applique aux nombres en général. C’est pourquoi, les grandes idées et les énoncés sont traités dans chacun des trois fascicules qui composent le présent guide.

Tous les individus doivent développer un sens du nombre et un sens des opérations solides pour pouvoir résoudre des problèmes. Afin de permettre ce développement chez les élèves, l’enseignant ou l’enseignante doit garder en tête l’importance de ces grandes idées. Dans le programme-cadre, le sens du nombre et le sens des opérations ne sont pas précisés dans les attentes et les contenus d’apprentissage puisqu’ils doivent être le fil conducteur et même la toile de fond de l’enseignement en numération et sens du nombre.

Portant sur les grandes idées du domaine Numération et sens du nombre reliées aux fractions, le présent fascicule comprend :

• une description des énoncés qui sous-tendent chacune des deux grandes idées;
• des exemples d’activités qui permettent aux élèves d’établir des liens entre des concepts liés aux fractions et des expériences de la vie quotidienne, des concepts dans les autres domaines des mathématiques et dans les autres matières;
• des exemples de professions qui nécessitent une bonne connaissance des fractions;
• le cheminement de l’élève en matière de vocabulaire et d’habiletés relatifs aux fractions;
• une situation d’apprentissage pour chaque année d’études.
GRANDE IDÉE 1 - SENS DU NOMBRE

Un message important ressort des recherches : les facettes individuelles du sens du nombre sont reliées entre elles et reposent sur un solide développement conceptuel. La nature complexe d’interrelations et de concepts de haut niveau du sens du nombre suggère que celui-ci ne peut être circonscrit à l’intérieur d’un chapitre d’un manuel ou d’une unité d’apprentissage. Le sens du nombre est davantage une façon d’enseigner qu’un thème à être enseigné.

(Van de Walle et Bowman Watkins, 2003, p. 146, traduction libre)

Aperçu

Le développement du sens du nombre chez les élèves doit servir de toile de fond dans l’enseignement du domaine Numération et sens du nombre. Le sens du nombre est un concept difficile à définir, puisqu’il ne s’agit pas de connaissances particulières, mais plutôt d’une vue d’ensemble sur les nombres. Il est possible de voir le sens du nombre comme étant « une bonne intuition des nombres et de leurs relations qui se développe graduellement, en explorant les nombres, en les visualisant dans une variété de contextes et en les reliant de diverses façons » (Howden, 1989, p. 11, traduction libre).

En d’autres termes, avoir le sens du nombre, c’est pouvoir reconnaître les nombres, déterminer leurs valeurs relatives et en comprendre l’utilisation, en divers contextes, qu’il s’agisse de s’en servir pour compter, mesurer, estimer ou effectuer des opérations. Il s’agit donc d’une compréhension relationnelle profonde des nombres, qui suppose plusieurs idées, relations et habiletés différentes.

Le sens du nombre se manifeste ou peut être « observé » en situations mathématiques. Les élèves ayant un sens du nombre développé sont conscients de l’importance du contexte dans l’utilisation des nombres. Ils peuvent plus facilement estimer des quantités et le résultat de calculs, et porter un jugement sur les nombres à la suite d’un calcul et en saisir l’utilisation en contexte. Ils sont en mesure de reconnaître diverses relations et de se représenter les nombres afin de s’en servir dans divers contextes.
En bas âge, les enfants comptent, apprennent à déterminer des quantités, à reconnaître des liens entre les quantités et les nombres, et ce, dans de nombreux contextes. Au cycle primaire, les élèves explorent les nombres naturels et progres- sent jusqu’à pouvoir comprendre le sens des nombres inférieurs à 1 000. Ils déve- loppent une intuition de la grandeur relative des nombres en les comparant et en approfondissant le sens de la valeur de position. Ils ont aussi l’occasion d’explorer le sens des fractions reliées aux demis, aux tiers et aux quarts.

Au cycle moyen, le développement du sens du nombre se poursuit avec le traitement de grands nombres ainsi que de divers types de nombres en relation les uns avec les autres. Les élèves approfondissent l’utilisation des fractions et explorent les nombres décimaux et les pourcentages. Le sens du nombre qu’ils ont bâti autour des nombres naturels s’enrichit alors avec l’utilisation de diverses notations des nombres.

Le sens du nombre est une façon de penser, de voir les nombres, de pouvoir les « manipuler » pour en saisir le sens et les utiliser efficacement. Il ne peut être enseigné ou montré en tant que tel. Toutefois, pour que les élèves développent leur sens du nombre, l’enseignant ou l’enseignante doit leur faire vivre une variété d’activités de manipulation, d’exploration, de représentation, de construction, de visualisation, de communication et de résolution de problèmes.

La section suivante explicite comment les élèves peuvent acquérir le sens du nombre en fonction des fractions.

Grande idée 1 – Sens du nombre

Le sens du nombre permet de comprendre les nombres qui nous entourent et de les traiter avec discernement.

Énoncé 1 – Quantité représentée par un nombre

Comprendre la quantité, c’est développer un sens du « nombre-de… » ou encore du « combien-il-y-a-de… ».

Énoncé 2 – Relations entre les nombres

Établir des relations, c’est reconnaître des liens entre les nombres afin de mieux en saisir le sens.

Énoncé 3 – Représentations des nombres

Passer d’une représentation d’un nombre à une autre permet de mieux comprendre les nombres.
Énoncé 1 - Quantité représentée par un nombre

Comprendre la quantité, c’est développer un sens du « nombre-de… » ou encore du « combien-il-y-a-de… ».

Le développement de la compréhension de la quantité représentée par une fraction repose sur l’expérience de l’élève avec du matériel concret et sur un enseignement qui mise davantage sur le sens de la fraction que sur les procédures.

(Bezuk et Cramer, 1989, p. 157, traduction libre)

Au cycle primaire, les élèves ont eu l’occasion d’explorer les fractions en partageant des ensembles d’objets (p. ex., si 3 amis veulent se partager également 18 pommes, chacun recevra $\frac{1}{3}$ des pommes) et en examinant des touts séparés en parties équivalentes (p. ex., un rectangle séparé en quarts). Le partage peut alors servir de tremplin pour l’étude des fractions au cycle moyen. Notons qu’au cycle primaire, le programme-cadre circonscrit l’étude des fractions aux demis, aux tiers et aux quarts.

En continuant d’exploiter le principe de partage, les élèves du cycle moyen créent des liens entre l’action du partage, le tout et les parties du tout. Ils sont en mesure de mieux comprendre le fractionnement et ils développent un sens de la fraction. Ils comprennent que la fraction s’emploie aussi pour illustrer un reste à la suite d’un partage (p. ex., si 4 élèves veulent se partager 5 petits gâteaux, chacun reçoit 1 petit gâteau et $\frac{1}{4}$ d’un gâteau).

Tout au long du cycle moyen, les élèves découvrent d’autres facettes des fractions et développent ainsi leur sens de la fraction. Ils font aussi des liens avec de nouvelles notions à l’étude comme les pourcentages et les nombres décimaux. Ces notions et ces liens servent à entamer le développement du raisonnement proportionnel. Pour plus de renseignements à ce sujet, voir Relations de proportionnalité (p. 49-54) dans le fascicule 1 (Nombres naturels) du présent guide.

Note : Puisque les fractions ne sont pas des nombres naturels, de nombreux manuels parlent de « nombres rationnels ». L’ensemble des nombres rationnels inclut les fractions, les nombres naturels et les nombres décimaux. Pour obtenir plus de renseignements, voir Annexe – Ensembles de nombres (p. 41-43).
L’objectif du présent fascicule est de traiter des éléments importants liés aux fractions et de proposer des pistes pédagogiques qui reposent sur la compréhension conceptuelle des fractions plutôt que sur l’application d’algorithmes usuels et sur la mémorisation. Dans cette section, la quantité représentée par une fraction est examinée à la lumière :

• des difficultés encourues par les élèves;
• du contexte;
• du concept de fraction;
• de la représentation mentale;
• d’autres concepts associés à la notation fractionnaire \(\frac{a}{b} \);
• de l’approximation.

DIFFICULTÉS ENCOURUES PAR LES ÉLÈVES

Une fraction est une partie d’un tout (voir *Autres concepts associés à la notation fractionnaire* \(\frac{a}{b} \), p. 36 et 37). De façon plus abstraite, une fraction est aussi un nombre (p. ex., le nombre \(\frac{1}{2} \) représente la moitié du nombre 1). Elle représente donc une quantité. Cependant, cette quantité n’est pas composée seulement de valeurs entières (p. ex., une quantité de poires peut correspondre à \(\frac{1}{2} \) poire, une distance peut être de \(1 \frac{3}{4} \) km, c’est-à-dire 1 km et une partie d’un autre). Les fractions offrent donc une précision supplémentaire que les nombres naturels ne peuvent donner.

• Les élèves ont du mal à se représenter des fractions selon divers modèles (voir Énoncé 3 – Représentations des nombres, p. 57-71). Puisque l’enseignement des fractions se fait souvent à l’aide d’un seul modèle, par exemple en prenant un cercle ou une tarte, beaucoup d’élèves n’ont pas intégré le fait que pour obtenir une fraction, soit une partie d’un tout, il faut d’abord diviser ce tout en parties équivalentes.
• Certains élèves comparent la partie d’un tout à la partie restante plutôt qu’au tout. Dans l’exemple qui suit, $\frac{5}{8}$ de l’ensemble des billes sont roses. Mais, certains élèves représentent cette situation par la fraction $\frac{5}{3}$.

• Les élèves ne développent pas un solide sens de la fraction puisque souvent, ils ne voient pas le lien entre une fraction (p. ex., $\frac{3}{4}$) et la fraction unitaire correspondante ($\frac{1}{4}$), soit que $\frac{3}{4} = \frac{1}{4} + \frac{1}{4} + \frac{1}{4}$ ou que $\frac{3}{4} = 3 \times \frac{1}{4}$ (voir p. 35).

• Plusieurs élèves ne maîtrisent pas le concept de fractions équivalentes parce qu’ils n’ont pas le bagage d’expériences suffisant pour comprendre la relation multiplicative qui caractérise ces fractions. En puisant dans leurs expériences passées avec les nombres naturels, il leur arrive de créer de fausses équivalences. Ils écrivent, par exemple,

$$\frac{2}{3} = \frac{4}{5}, \text{ce qui est faux, au lieu de l’équivalence } \frac{2}{3} = \frac{4}{6} \text{ qui est vraie.}$$

Pour plus de renseignements au sujet des fractions équivalentes, voir Relations d’égalité (p. 50-54).

• Les élèves ont de la difficulté à estimer des fractions. Pour plus de renseignements à ce sujet, voir Approximation (p. 38-40).

• Les élèves ne comprennent pas que dans une situation, une fraction représente d’abord une relation entre une partie et un tout et pas nécessairement une quantité absolue, d’où l’importance de préciser le tout. L’élève qui n’a pas développé son sens de la fraction peut penser qu’un demi ($\frac{1}{2}$) d’une chose est plus grand ou plus petit qu’un tiers ($\frac{1}{3}$) d’une autre chose, alors que les quantités représentées par ces fractions ne peuvent être comparées sans tenir compte de la taille des tout.
• Certains élèves ont recours à leurs connaissances des nombres naturels pour comparer deux fractions plutôt qu’à la relation entre le numérateur et le dénominateur. Ainsi, selon eux, $\frac{1}{3}$ est plus grand que $\frac{1}{2}$, puisque 3 est plus grand que 2. Pour plus de renseignements au sujet de la comparaison de fractions, voir Relations d’ordre (p. 44-49).

CONTEXTE

Comme il est expliqué sous Énoncé 1 – Quantité représentée par un nombre (p. 31-32) dans le fascicule 1 (Nombres naturels) du présent guide, le contexte est constitué de l’ensemble des renseignements entourant une situation. Dans l’étude des fractions, le tout est une partie essentielle du contexte. En effet, une fraction comme $\frac{2}{3}$, sans mention du tout, n’offre pas suffisamment d’information pour que la quantité correspondant à la fraction en contexte soit bien cernée. Par exemple, quand il est question de un demi, les gens conçoivent généralement que c’est peu. Pourtant, il faut considérer cette quantité en contexte — comme on le fait pour les nombres naturels — puisqu’on peut porter divers jugements sur une même fraction. Manger la moitié d’une pomme à la collation, c’est peu; manger la moitié d’une tarte, c’est beaucoup; si la moitié des élèves de la classe sont absents, c’est beaucoup. Le contexte est donc essentiel si on veut porter un jugement éclairé sur la quantité représentée par une fraction.

Il est aussi important que les élèves apprennent à toujours tenir compte du tout. Une fraction n’a aucun sens si elle n’est pas mise en relation avec un tout. Par exemple, on ne peut comparer une demi-pizza et un tiers de pizza si elles n’ont pas la même superficie à moins que l’on nous présente les pizzas en question. L’enseignant ou l’enseignante doit présenter des situations d’apprentissage qui permettent aux élèves de découvrir qu’une fraction ne révèle rien de la taille du tout ou de ses parties; elle nous renseigne seulement sur la relation qui existe entre un tout et ses parties.
Dans toute situation, le tout correspond à un élément ou à un ensemble d’éléments.

1. Si le tout correspond à un élément, on peut le fractionner en parties équivalentes. Chacune des parties peut alors être comparée au tout.

Exemples

<table>
<thead>
<tr>
<th>Le tout est un objet</th>
<th>Le tout est une surface</th>
<th>Le tout est une longueur</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Image: orange, grape]</td>
<td>[Image: hexagon]</td>
<td>[Image: line segment]</td>
</tr>
</tbody>
</table>

$\frac{1}{2}$ pamplemousse $\frac{1}{6}$ de l’hexagone est vert $\frac{2}{3}$ du segment est rouge

2. Si le tout correspond à un ensemble d’éléments, soit une collection d’objets, quelques-uns des éléments peuvent être regroupés pour former une partie de l’ensemble et représenter ainsi une partie du tout.

Exemples

<table>
<thead>
<tr>
<th>Le tout est un ensemble de crayons</th>
<th>Le tout est un ensemble de billes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$\frac{1}{12}$ de l’ensemble est jaune $\frac{2}{3}$ de l’ensemble est rouge

En général, lorsqu’il est question de fractions, on se réfère à trois modèles de tout : le modèle d’ensemble, le modèle de longueur et le modèle de surface. Ces modèles sont examinés dans *Représentations à l’aide de modèles* (p. 62-71).
CONCEPT DE FRACTION

Le mot *fraction* vient du latin *fractio* qui veut dire « rupture ». Une partie d’un objet brisé peut donc représenter une fraction, car c’est une partie d’un tout. Toutefois, pour déterminer une fraction d’un objet divisé en plusieurs parties, il faut que les parties soient équivalentes. Précisons que lorsqu’il est question de parties équivalentes, il ne s’agit pas nécessairement de formes identiques, bien que celles-ci soient plus faciles à utiliser. Les représentations de un quart ($\frac{1}{4}$) dans l’exemple ci-dessous sont basées sur l’aire du tout. Puisque chaque tout a une aire de 16 unités carrées, chaque quart ($\frac{1}{4}$) a une aire de 4 unités carrées. Malgré leurs formes différentes, chacun de ces quarts représente une partie équivalente d’un même tout.

Exemple

Six représentations équivalentes de un quart ($\frac{1}{4}$) du même tout

Note : L’activité *Les drapeaux* (p. 135), permet d’explorer le concept de parties équivalentes.

Il est important pour les élèves de comprendre que plus le tout est fractionné, plus ses parties sont petites.

Exemple

Les quarts d’un tout sont plus gros que les dixièmes du même tout.
Afin de concrétiser le fractionnement, il est recommandé de présenter des activités de manipulation, telles que le pliage et le découpage. Ces activités permettent un examen tactile de la quantité représentée par une fraction. En effet, le fractionnement de bandes de papier pour représenter des demis, des tiers, des quarts, des cinquièmes de bandes est un exercice formateur pour les élèves. Par la suite, ces bandes peuvent servir de modèles dans d’autres situations d’apprentissage. Ces activités d’apparence simple recèlent un potentiel étonnant!

Les activités qui requièrent de compter les parties d’un tout, une à une, et de les mettre en relation avec le tout développent la compréhension du rôle du numérateur et du dénominateur. De plus, les élèves apprennent que le nom donné à chaque partie est déterminé par le nombre de parties retrouvées dans le tout. Ainsi, lorsqu’un tout est divisé en deux parties équivalentes, il s’agit de demis; lorsqu’il est divisé en trois parties équivalentes, il s’agit de tiers; lorsqu’il est divisé en quatre parties équivalentes, il s’agit de quarts. À partir de cinq parties équivalentes, on ajoute le suffixe ième au nombre de parties pour obtenir des cinquièmes, des vingtièmes, etc. L’élève qui maîtrise le concept de partie d’un tout n’a pas besoin de recréer l’image de la « tarte » pour comprendre, par exemple, que six sixièmes (6/6) forment un tout. Ainsi, afin d’identifier la fraction représentée ci-dessous, son raisonnement pourrait être le suivant : « Je compte les morceaux (1, 2, 3, 4, 5 et 6) et j’en conclus qu’il s’agit de sixièmes. Puisque cinq (5) parties sont ombrées, je peux affirmer que cinq sixièmes (5/6) de la figure est ombrée. »

| Numérateur : Nombre de parties équivalentes du tout dont se compose la fraction. |
| Dénominateur : Nombre de parties équivalentes par lequel le tout est divisé. |

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>
Ce processus les amène aussi à reconnaître qu’une fraction peut correspondre à la somme de fractions unitaires.

Exemple

\[
\frac{3}{4} = \frac{1}{4} + \frac{1}{4} + \frac{1}{4}
\]

Les élèves qui ont compté, par exemple, des parties équivalentes de touts peuvent expliquer que le dénominateur représente ce qui est compté (p. ex., des sixièmes) et que le numérateur représente combien il y en a. Van de Walle et Folk (2005, p. 229) soulèvent un point intéressant, à savoir que les termes *numérateur* et *dénominateur* sont des mots plutôt savants qui relèvent davantage du monde des adultes qui comprennent le lien entre *énumération* et *numérateur* et le lien entre *dénomination* et *dénominateur*. Il suggère que la connaissance de ces termes, chez les élèves du cycle moyen, ne témoigne nullement de cette compréhension.

RÉPRÉSENTATION MENTALE

Le développement du sens de la fraction chez les élèves dépend de leur habileté à visualiser les quantités. Les élèves doivent comprendre la quantité représentée par une fraction dans une situation donnée. Par exemple, s’ils peuvent visualiser l’énoncé « un tiers des manuels de mathématiques de mes élèves doivent être réparés », ils peuvent en comprendre le sens. Généralement, les élèves visualisent assez facilement une fraction modélisée par une surface. Ils ont plus de difficulté à visualiser une fraction modélisée par une partie d’un ensemble.

Il est donc important de présenter une variété de situations et de modèles qui exercent les élèves à visualiser la quantité représentée par une fraction. L’activité *Captions des images de fractions* (p. 136) offre différentes suggestions de telles situations.

AUTRES CONCEPTS ASSOCIÉS À LA NOTATION FRACTIONNAIRE $\frac{a}{b}$

La notation fractionnaire $\frac{a}{b}$ est généralement associée au concept de **partie d’un tout**. Le tout peut être un élément ou un ensemble d’éléments. Par exemple :

- J’ai donné un quart ($\frac{1}{4}$) de mon sandwich à Alex.

![Diagramme de fraction](image)

- Un quart ($\frac{1}{4}$) de mes billes sont bleues.

Or, la notation fractionnaire peut être aussi associée à d’autres concepts tels que la division, le rapport et l’opérateur.

Division

Avec le développement de l’algèbre, une division est parfois exprimée sous forme fractionnaire. Prenons, par exemple, une division comme $2 ÷ 3$ exprimée ainsi : $\frac{2}{3}$. Dans un tel contexte, on lit « deux divisé par trois » et non pas « deux tiers », ce qui complique les choses. Or, il y a tout de même un lien entre $\frac{2}{3}$ (deux divisé par trois) et $\frac{2}{3}$ (deux tiers). Comme les deux exemples suivants l’expliquent, la réponse de la division de 2 par 3 ($2 ÷ 3$) est $\frac{2}{3}$ (deux tiers).

Exemple

Trois amis veulent se partager deux pizzas. Combien chacun recevra-t-il?

Il s’agit bien de $2 ÷ 3$ qui peut être représenté par $\frac{2}{3}$. Pour trouver la réponse, on peut imaginer que la première pizza sera coupée en tiers et chacun recevra un tiers de la pizza. Ensuite, la deuxième pizza sera aussi coupée en tiers et chacun recevra un autre tiers de pizza.

![Diagramme de pizza](image)

Chaque ami recevra donc deux tiers ($\frac{2}{3}$) d’une pizza.
Rapport

Les rapports peuvent aussi être écrits sous forme de fraction. Un rapport est une comparaison entre deux quantités de même nature au moyen de la division. De façon plus précise, le rapport est le quotient de cette division. Par exemple, s’il y a 2 garçons et 3 filles dans un groupe, on dit que le rapport du nombre de garçons au nombre de filles est de 2 à 3. Ce rapport s’écrit $\frac{2}{3}$ ou $2 \div 3$ et se lit « 2 à 3 ».

Dans ce cas, il s’agit d’un rapport d’une partie d’un ensemble à une autre partie du même ensemble (rapport de partie-à-partie).

De cette même situation, on peut aussi dire que dans un ensemble de 5 enfants, il y a 2 garçons et 3 filles. Ainsi, on peut dire que le rapport du nombre de garçons au nombre d’enfants est de 2 à 5 ($2 : 5$). Dans ce cas, il s’agit d’un rapport d’une partie d’un ensemble à l’ensemble (rapport de partie-à-tout). Le rapport compare une partie à un tout, il s’agit donc d’une fraction. On peut donc aussi dire $\frac{2}{5}$ des enfants de l’ensemble sont des garçons.

Note : Bien que la notion de rapport ne soit pas au programme du cycle moyen, les élèves se préparent à l’étude de ce concept et développent leur raisonnement proportionnel lorsqu’ils traitent des fractions équivalentes. Pour plus de renseignements au sujet des rapports et du raisonnement proportionnel, voir *Relations de proportionnalité* (p. 49-54) dans le fascicule 1 (Nombres naturels) du présent guide.

Opérateur

Au cycle intermédiaire, la fraction est aussi présentée comme un opérateur dans les situations impliquant la multiplication d’un nombre par une fraction. Par exemple, si 24 morceaux de gomme entrent dans une empaqueteuse qui fait ressortir 12 paquets, il s’agit de $\frac{1}{2} \times 24 = 12$ qui a été effectué. Dans ce cas, $\frac{1}{2}$ ne représente pas une partie d’un tout (p. ex., $\frac{1}{2}$ gomme), mais une quantité qui opère sur l’ensemble des 24 morceaux de gomme. Les situations de fraction utilisées comme opérateur peuvent être représentées par un schéma comme illustré ci-dessous. Tout comme pour le rapport, ce concept n’est pas au programme du cycle moyen.

![Diagramme de multiplication d’un nombre par une fraction](image)
APPROXIMATION

La maîtrise du sens du nombre dans le cadre de l’étude des fractions inclut l’estimation et l’arrondissement des valeurs représentées par des fractions, ainsi que l’arrondissement de fractions. Pour plus de renseignements à ce sujet, voir *Approximation* (p. 35-41) dans le fascicule 1 (*Nombres naturels*) du présent guide.

Estimation

Pour estimer une quantité, les élèves doivent d’abord saisir le contexte et, pour cela, avoir recours à leur sens analytique et à leurs expériences personnelles. Ce bagage prend souvent la forme d’une représentation mentale et joue le rôle de repère visuel. On n’insistera jamais assez sur l’importance d’enrichir constamment ce bagage de référents visuels en faisant vivre aux élèves des situations variées dans divers contextes. Soulignons que les élèves qui sont exposés à des référents visuels et à du matériel de manipulation, tels que les cercles de fractions, les jetons, les bandes de carton et les réglettes, développent plus facilement leur sens de l’ordre de grandeur, qui est indispensable à l’estimation de la quantité représentée par une fraction.

Exemple

Projeter la tarte illustrée ci-dessous et demander aux élèves d’estimer la fraction de la tarte qui reste.

![Exemple de tarte](image-url)
Voici un exemple de raisonnement d’élève :

J’examine la tarte et je l’imagine séparée en deux. Je reconnais alors qu’il en reste plus qu’une moitié ($\frac{1}{2}$).

Si elle est séparée en trois, je vois qu’il en reste moins que deux tiers ($\frac{2}{3}$).

Mais si elle est séparée en cinq morceaux égaux, je crois que c’est très près de l’équivalent de trois morceaux.

Il reste environ $\frac{3}{5}$ de la tarte.

Donc, il est important que l’enseignant ou l’enseignante fournissent aux élèves des occasions d’estimer les quantités représentées par des fractions afin de développer cette habileté. Voici quelques exemples de situations d’estimation :

1. Présenter une peinture aux élèves et leur demander d’estimer la fraction du tableau qui est peinte en vert (en rouge, en bleu, etc.).

2. Pendre avantage d’une situation comme un rassemblement dans la cour de l’école et demander aux élèves d’estimer la fraction du groupe composée par les garçons, par les filles, etc.
3. Présenter divers modèles représentant une fraction (voir les illustrations ci-dessous) et inviter les élèves à estimer la valeur des fractions présentées et à justifier leur estimation.

4. Montrer aux élèves des dessins qui représentent des touts comme illustré ci-dessous et leur demander de représenter approximativement une fraction donnée (p. ex., $\frac{3}{4}$) sans effectuer le fractionnement.

Arrondissement

L’arrondissement est une approximation d’une valeur connue. On l’utilise pour communiquer l’ordre de grandeur d’une quantité. Par exemple, un sondage a permis de déterminer que 113 des 410 répondants étaient d’accord avec une affirmation. Pour que les gens saisissent mieux l’ampleur des résultats, la fraction $\frac{113}{410}$ peut être arrondie ($\frac{113}{410}$ est à peu près égal à $\frac{100}{400}$, soit environ $\frac{1}{4}$); on dira plutôt que près du quart ($\frac{1}{4}$) des répondants étaient d’accord.
ANNEXE – ENSEMBLES DE NOMBRES

Les nombres et notre compréhension des nombres ont évolué à travers les siècles. Par exemple, il a fallu un certain temps pour qu’on accepte que 0 soit un nombre. Il a fallu des siècles pour qu’on accepte et qu’on comprenne les nombres négatifs. On s’est aperçu qu’un nombre comme $\sqrt{2}$ était supérieur à 1 et inférieur à 2, mais qu’il était impossible d’affirmer qu’il était égal à 1 plus une fraction. Lorsqu’on a inventé l’écriture décimale des nombres comme 1,5 et 3,2, on s’est rendu compte que certains nombres avaient un comportement étrange puisqu’ils avaient un nombre infini de décimales (p. ex., 0,333…). Il est alors devenu nécessaire de définir une classification des nombres selon certaines caractéristiques. Elle est présentée ici à titre de référence; elle n’est pas au programme du cycle moyen.

Ensemble des nombres naturels (\mathbb{N})

L’ensemble des nombres naturels est formé des nombres entiers (0, 1, 2, 3…). Cette définition ne fait pas l’unanimité. Par exemple, dans les pays de langue anglaise, le nombre 0 est exclu des nombres naturels. On peut représenter cet ensemble de nombres par le diagramme de Venn illustré ci-contre.

Ensemble des nombres entiers (\mathbb{Z})

L’ensemble des nombres entiers est composé des nombres naturels (0, 1, 2, 3…) et des entiers négatifs (−1, −2, −3…). On peut donc dire que tous les nombres naturels sont des nombres entiers, mais les nombres entiers ne sont pas tous des nombres naturels. Les élèves du cycle moyen sont exposés aux entiers négatifs dans des contextes informels (p. ex., une température de −3 °C) même si ces entiers ne font pas partie du programme-cadre de mathématiques. On peut représenter la relation entre les nombres naturels et les nombres entiers par le diagramme de Venn illustré ci-contre.
Ensemble des nombres décimaux (D)

L’ensemble des nombres décimaux est formé des nombres qui peuvent être exprimés sous forme décimale avec une partie décimale finie (p. ex., 3,72; –5,1; 0; –7,0; 12,13564). Cet ensemble inclut tous les entiers, car ils peuvent être exprimés avec une partie décimale (p. ex., 3 = 3,0). Il inclut aussi certaines fractions, comme $\frac{2}{5}$ et $\frac{3}{16}$, puisque $\frac{2}{5} = 0,4$ et $\frac{3}{16} = 0,1875$. Cependant, un grand nombre de fractions sont exclues, comme $\frac{1}{3}$ et $\frac{7}{11}$, car leur développement décimal nécessite un nombre infini de décimales ($\frac{1}{3} = 0,33333…$ et $\frac{7}{11} = 0,636363…$).

Il est intéressant de constater que tous les nombres décimaux peuvent être exprimés sous forme de fraction dont le dénominateur est une puissance de 10. (Les puissances de 10 sont 1, 10, 100, 1000… On inclut 1 comme puissance de 10, car, par définition, $10^0 = 1$.)

Exemples

\[3,72 = 3 \frac{72}{100} = \frac{372}{100}\]

\[–5,1 = –5 \frac{1}{10} = –\frac{51}{10}\]

\[5 = 5,0 = \frac{5}{1}\]

Puisque les nombres naturels sont tous des nombres entiers et que les nombres entiers sont tous des nombres décimaux, on peut représenter la relation entre les ensembles de nombres par le diagramme de Venn ci-contre.

Note: Il n’existe pas d’ensemble de nombres à virgule. L’appellation *nombre à virgule* signifie simplement que l’expression du nombre contient une virgule. Ainsi, un nombre à virgule peut être un nombre décimal (p. ex., 0,45), un nombre périodique (p. ex., 0,333…) ou un nombre irrationnel (p. ex., 3,1415…).
Ensemble des nombres rationnels (\(Q\))
L'ensemble des nombres rationnels inclut tous les nombres qui peuvent être exprimés sous forme fractionnaire (\(\frac{a}{b}\)). Il inclut les nombres naturels, les nombres entiers et les nombres décimaux, ainsi que les nombres dont l'expression décimale est infinie et périodique (p. ex., \(\frac{1}{3} = 0,33333\ldots\); \(\frac{5}{11} = 0,454545\ldots = 0,\overline{45}\); \(-\frac{421}{198} = -2,1262626\ldots = -2,\overline{126}\)). On peut représenter la relation entre les ensembles de nombres par le diagramme de Venn ci-contre.

Ensemble des nombres irrationnels (\(Q'\))
L'ensemble des nombres irrationnels inclut tous les nombres qui ne sont pas rationnels, c'est-à-dire qui ne peuvent être exprimés sous forme fractionnaire. Lorsqu'on tente d'écrire ces nombres sous forme décimale, on obtient une partie décimale infinie et non périodique, ce qui donne l'impression que ces nombres cachent toujours quelque chose, soit la suite de leurs décimales. Par exemple, on sait que le nombre \(\sqrt{2}\) existe. En effet, un carré dont les côtés ont une longueur de 1 possède des diagonales de longueur \(\sqrt{2}\).

On sait que ce nombre, multiplié par lui-même, donne 2. On sait aussi que ce nombre est à peu près égal à 1,4142, mais qu'il est impossible de connaître toutes ses décimales et qu'il est impossible de le représenter par une fraction.

Les nombres irrationnels (p. ex., \(\pi = 3,1415926535897932\ldots\) et \(\sqrt{2} = 1,41421356\ldots\)) surviennent surtout dans des travaux mathématiques des cycles intermédiaire et supérieur. Ils ne sont pas au programme d'études du cycle moyen.

Ensemble des nombres réels (\(R\))
L'ensemble des nombres réels englobe les nombres rationnels et les nombres irrationnels. Vers la fin du cycle supérieur, il devient nécessaire pour résoudre certaines équations, de considérer des nombres qui vont au-delà des nombres réels.
Énoncé 2 - Relations entre les nombres

Établir des relations, c’est reconnaître des liens entre les nombres afin de mieux en saisir le sens.

… les idées mathématiques font partie d’un réseau complexe d’interrelations. Les nombres rationnels ne font pas exception. Pour bien les comprendre (fractions, rapports, nombres à virgule, droites numériques, parties d’un tout), il faut une base solide des quatre opérations sur les nombres naturels et une compréhension des concepts inhérents à la mesure.

(Behr et Post, 1992, p. 201, traduction libre)

Pour développer un bon sens du nombre, les élèves du cycle moyen doivent apprendre à regarder les nombres en relation avec d’autres nombres, à les décomposer et à les manipuler pour les comparer, les ordonner et pour effectuer des opérations. L’observation des nombres, avant de passer à une estimation ou à un calcul, permet d’établir des liens et de traiter les nombres de façon efficace.

Un enseignement efficace et équilibré permet aux élèves de développer diverses stratégies pour comparer des nombres. De même, il doit permettre aux élèves de développer et d’approfondir leur compréhension de la valeur des fractions. C’est par le biais d’expériences concrètes et de représentations que les élèves apprennent à visualiser la valeur d’une fraction et à développer les stratégies pour les ordonner, les comparer et les mettre en relation avec d’autres nombres.

Dans cette section, les relations suivantes sont traitées :
• les relations d’ordre;
• les relations d’égalité;
• les relations entre les nombres exprimés sous différentes formes.

RELATIONS D’ORDRE

Il est important que les élèves apprennent à ordonner des fractions en les comparant. L’habileté à ordonner et l’habileté à comparer doivent reposer sur les représentations des fractions que les élèves ont construites. Elles doivent découler
de situations de résolution de problèmes qui permettent aux élèves de développer un sens de la valeur d'une fraction. C'est ce sens de la fraction qui permet aux élèves de comparer deux fractions et de conclure qu'une est plus grande que l'autre. Par opposition, l'enseignement qui se fait hors contexte tend à favoriser un apprentissage d’algorithmes qui néglige le sens de la fraction.

Les élèves du cycle moyen ont déjà des idées bien ancrées en ce qui a trait aux propriétés des nombres naturels. Or, lorsqu’ils commencent à travailler avec des fractions, les élèves font souvent face à un déséquilibre cognitif, c'est-à-dire une impression que ce qui était vrai ne l’est plus. Par exemple, ils ont appris qu’en présence de deux nombres naturels, le plus grand nombre indique une quantité plus grande. Ils tentent de transférer leurs connaissances et leurs compétences aux fractions. Ainsi, en voulant comparer $\frac{1}{6}$ et $\frac{1}{3}$, certains élèves croient que $\frac{1}{6}$ est plus grand que $\frac{1}{3}$, puisque 6 est plus grand que 3. Ils se sentent en déséquilibre s’ils se font dire qu’ils ont tort. Pour éviter de telles situations, l’apprentissage doit reposer sur un regard analytique de la fraction plutôt que sur un automatisme ou un algorithme.

Les activités qui amènent les élèves à comparer et à ordonner les fractions doivent favoriser la construction du sens de la fraction. Pour comparer des fractions, il est rarement nécessaire de chercher un dénominateur commun. Ainsi, il existe de nombreuses stratégies qui permettent de comparer des fractions. Généralement, la première stratégie apprise consiste en l’utilisation d’une représentation concrète ou semi-concrète des fractions en jeu. On peut recourir à cette stratégie peu importe l’occasion. On peut aussi comparer les numérateurs si les dénominateurs sont identiques, ou comparer les dénominateurs si les numérateurs sont identiques. L’utilisation de fractions repères est une autre stratégie efficace.

Il est important de travailler à fond la comparaison des fractions avant l’équivalence des fractions. En effet, celle-ci est très complexe et la comparaison sert d’élément catalyseur à la compréhension des fractions équivalentes.
Comparaison de fractions en les représentant concrètement ou semi-concrètement

Cette première stratégie consiste à représenter à l’aide d’un modèle les deux fractions en cause. Par exemple, comparons les fractions $\frac{2}{5}$ et $\frac{3}{8}$.

\[
\begin{array}{c}
\frac{2}{5} \\
\frac{3}{8}
\end{array}
\]

Donc, on peut conclure en comparant les deux représentations que $\frac{2}{5} > \frac{3}{8}$.

Il est très important de souligner, s’il s’agit de fractions d’un même tout, que le même modèle (tout) a été utilisé pour représenter les deux fractions. Les élèves négligent parfois l’importance du tout et n’interprètent pas correctement des situations avec des fractions. Par exemple, dans la situation suivante, en ne comparant pas le même tout, des élèves pourraient affirmer que $\frac{1}{3} = \frac{1}{4}$.

\[
\begin{array}{c}
\frac{1}{3} \\
\frac{1}{4}
\end{array}
\]

Dans la situation représentée, il est vrai que $\frac{1}{3}$ du premier rectangle correspond au $\frac{1}{4}$ du deuxième rectangle. Mais afin de comparer les fractions d’un même tout, il aurait fallu les représenter à l’aide du même tout.

\[
\begin{array}{c}
\frac{1}{3} > \frac{1}{4}
\end{array}
\]

Comparaison de fractions ayant un dénominateur commun

En 4e année, les élèves s’inspirent généralement de leurs connaissances antérieures et de leurs expériences avec les nombres naturels pour déterminer, sans difficulté, que $\frac{4}{5}$ est supérieur à $\frac{3}{5}$. Or, il arrive souvent que la réponse ne soit pas motivée par les bonnes raisons. En effet, beaucoup d’élèves ne font que comparer les numérateurs. Van de Walle et Folk (2005, p. 233) suggèrent aux enseignants et aux enseignantes de mettre l’accent sur le fait qu’il s’agit de parties de même taille ou de même nature. Ainsi en comparant $\frac{4}{5}$ et $\frac{3}{5}$, on souligne que $\frac{4}{5}$ représentent 4 parties d’une certaine taille et que $\frac{3}{5}$ représentent 3 parties de cette taille.
même taille. On met ainsi l’accent sur la comparaison d’éléments de même nature (des cinquièmes), comme on le ferait si on comparait 3 oranges et 4 oranges.

Comparaison de fractions ayant un numérateur commun

En 4e année, les élèves sont en mesure d’accorder un sens aux nombres qui composent une fraction et d’entamer un processus réflexif afin de comparer deux fractions ayant un numérateur commun. Par exemple, comparons les fractions $\frac{5}{9}$ et $\frac{5}{6}$.

Dans les deux cas, il y a 5 parties d’un tout. Lorsque le tout est divisé en 9 parties équivalentes, ces parties sont plus petites que celles du même tout divisé en 6 parties équivalentes. Ainsi, les neuvièmes sont plus petits que les sixièmes et on en a 5 dans les deux cas. Donc, $\frac{5}{9}$ est plus petit que $\frac{5}{6}$.

Pourtant, il n’est pas rare de voir des élèves penser le contraire, puisque 9 est plus grand que 6 et que les numérateurs sont les mêmes. D’où l’importance de s’attarder au sens du numérateur et du dénominateur et de développer l’habileté à visualiser des fractions.

Comparaison de fractions en utilisant des fractions repères

En 5e année, il est suggéré d’aider les élèves à développer leur sens de la fraction en ayant recours à des fractions repères. D’abord, les élèves se servent de trois repères, soit 0, $\frac{1}{2}$ et 1. Ils comparent ensuite des fractions données à ces repères. Voici quelques généralisations que les élèves sont en mesure de faire après avoir effectué un certain nombre d’activités d’apprentissage.
Si le dénominateur d’une fraction est beaucoup plus grand que le numérateur, la fraction représente une petite quantité et la fraction est près de 0. Ainsi, $\frac{3}{25}$ est près de 0.

Si le numérateur d’une fraction est à peu près la moitié du dénominateur, la fraction est près de $\frac{1}{2}$. Ainsi, $\frac{3}{8}$ est près de $\frac{1}{2}$. On pourrait ajouter que $\frac{3}{8}$ est légèrement inférieur à $\frac{1}{2}$, car $\frac{3}{8}$ est inférieur à $\frac{4}{8}$, soit $\frac{1}{2}$.

Si le numérateur d’une fraction est à peu près égal au dénominateur, la fraction est près de 1, car elle représente presque entièrement le tout. Ainsi, $\frac{9}{10}$ est près de 1.

Voici un modèle semi-concret qui illustre ces exemples.

<table>
<thead>
<tr>
<th>0</th>
<th>$\frac{1}{2}$</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si le dénominateur d’une fraction est beaucoup plus grand que le numérateur, la fraction représente une petite quantité et la fraction est près de 0. Ainsi, $\frac{3}{25}$ est près de 0.</td>
<td>Si le numérateur d’une fraction est à peu près la moitié du dénominateur, la fraction est près de $\frac{1}{2}$. Ainsi, $\frac{3}{8}$ est près de $\frac{1}{2}$. On pourrait ajouter que $\frac{3}{8}$ est légèrement inférieur à $\frac{1}{2}$, car $\frac{3}{8}$ est inférieur à $\frac{4}{8}$, soit $\frac{1}{2}$.</td>
<td>Si le numérateur d’une fraction est à peu près égal au dénominateur, la fraction est près de 1, car elle représente presque entièrement le tout. Ainsi, $\frac{9}{10}$ est près de 1.</td>
</tr>
</tbody>
</table>

Pour comparer deux fractions, les élèves peuvent comparer chacune à un de ces repères. Par exemple, si on veut comparer $\frac{5}{20}$ et $\frac{7}{8}$, on peut déterminer que $\frac{5}{20}$ représente une quantité entre 0 et $\frac{1}{2}$, alors que $\frac{7}{8}$ représente une quantité entre $\frac{1}{2}$ et 1. On peut donc conclure que $\frac{5}{20}$ est plus petit que $\frac{7}{8}$. On peut aussi utiliser des repères semblables pour les nombres fractionnaires. Par exemple, pour comparer $\frac{5}{20}$ et $\frac{7}{8}$, on peut utiliser les repères 2, 2$\frac{1}{2}$ et 3.

Lorsque ces repères deviennent bien ancrés, on peut ajouter d’autres repères, tels que $\frac{1}{4}$ et $\frac{3}{4}$. Ces repères mettent l’accent sur le fait que le quart est la moitié de un demi.

Comparaison de fractions en utilisant d’autres aspects du sens de la fraction

Dans un environnement d’apprentissage axé sur la résolution de problèmes, les élèves peuvent découvrir de nombreuses stratégies de comparaison basées sur le sens de la fraction qu’ils ont construit.

Exemple 1

On veut comparer $\frac{8}{9}$ et $\frac{2}{3}$. On peut noter qu’il manque une partie à chaque fraction pour faire un tout. On reconnaît ainsi que pour la fraction $\frac{8}{9}$, il manque $\frac{1}{9}$ pour faire 1, alors que pour la fraction $\frac{2}{3}$, il en manque $\frac{1}{3}$. Puisque la partie manquante $\frac{1}{3}$ est plus grande que la partie manquante $\frac{1}{9}$, alors $\frac{8}{9}$ est plus près de 1 que $\frac{2}{3}$. Ainsi, $\frac{8}{9}$ est plus grand que $\frac{2}{3}$.

![Comparison of fractions](image)
Exemple 2
On veut comparer $\frac{2}{3}$ et $\frac{7}{12}$. Les élèves pourraient utiliser leurs connaissances des fractions équivalentes pour conclure que $\frac{2}{3}$ est plus grand que $\frac{7}{12}$, car $\frac{2}{3} = \frac{8}{12}$ et $\frac{8}{12}$ représente plus de parties de même taille que $\frac{7}{12}$.

À la suite de l’apprentissage des divers concepts relatifs aux fractions, les élèves peuvent utiliser l’ensemble de leurs connaissances au sujet des fractions et l’ensemble des stratégies de comparaison de fractions pour résoudre des problèmes.

Exemple
Dans certaines courses automobiles (p. ex., formule 1), le pilote qui franchit le premier la ligne d’arrivée est déclaré vainqueur et, à ce moment-là, la course se termine officiellement. Le classement des coureurs n’est donc pas déterminé par l’ordre selon lequel ils franchissent la ligne d’arrivée comme dans les courses traditionnelles, mais plutôt par la position des pilotes à la fin du parcours; cette dernière correspond à la fraction du circuit qu’ils ont parcouru lorsque le premier pilote franchit la ligne. Ce système permet d’assigner une position à tous les pilotes, même à ceux qui n’auraient pas terminé la course.

Voici la liste des fractions du circuit parcouru par chaque pilote à la fin de la course :

<table>
<thead>
<tr>
<th>Wagner : $\frac{8}{9}$</th>
<th>Guelph : $\frac{9}{20}$</th>
<th>Villeneuve : $\frac{2}{3}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trottier : 1</td>
<td>Munch : $\frac{1}{4}$</td>
<td>Santana : $\frac{7}{10}$</td>
</tr>
<tr>
<td>Fabriani : $\frac{2}{27}$</td>
<td>Burk : $\frac{5}{6}$</td>
<td>Fround : $\frac{3}{4}$</td>
</tr>
<tr>
<td>Smith : $\frac{5}{16}$</td>
<td>Wong : $\frac{1}{15}$</td>
<td>Colman : $\frac{1}{9}$</td>
</tr>
<tr>
<td>Sulton : $\frac{9}{16}$</td>
<td>Martina : $\frac{5}{8}$</td>
<td></td>
</tr>
</tbody>
</table>

Solution : Classement final de la course

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trottier</td>
<td>Wagner</td>
<td>Burk</td>
<td>Fround</td>
<td>Santana</td>
<td>Villeneuve</td>
<td>Martina</td>
<td>Sulton</td>
<td>Guelph</td>
<td>Smith</td>
<td>Munch</td>
<td>Colman</td>
<td>Fabriani</td>
<td>Wong</td>
</tr>
<tr>
<td>1</td>
<td>$\frac{8}{9}$</td>
<td>$\frac{5}{6}$</td>
<td>$\frac{3}{4}$</td>
<td>$\frac{7}{10}$</td>
<td>$\frac{2}{3}$</td>
<td>$\frac{5}{8}$</td>
<td>$\frac{9}{16}$</td>
<td>$\frac{9}{20}$</td>
<td>$\frac{5}{16}$</td>
<td>$\frac{1}{4}$</td>
<td>$\frac{1}{9}$</td>
<td>$\frac{2}{27}$</td>
<td>$\frac{1}{15}$</td>
</tr>
</tbody>
</table>
RELATIONS D’ÉGALITÉ

Pour utiliser les relations d’égalité, les élèves doivent reconnaître l’égalité entre deux expressions numériques. De façon plus particulière, ils doivent reconnaître que plusieurs fractions peuvent représenter une même quantité. Ils doivent aussi reconnaître l’égalité entre un nombre fractionnaire et la fraction impropre correspondante.

Fractions équivalentes

Reconnaître l’égalité de deux fractions, c’est reconnaître que les deux fractions représentent la même quantité. Selon Van de Walle et Folk (2005, p. 236 et 237), il faut faire la distinction entre le concept de fractions équivalentes et l’algorithme qui permet de déterminer des fractions équivalentes.

Concept : Deux fractions sont équivalentes si elles représentent la même quantité.

Algorithmes : Pour obtenir une fraction équivalente à une fraction quelconque, il faut multiplier ou diviser son numérateur et son dénominateur par le même nombre (différent de 0).

La description de l’algorithme présentée ci-dessus ne permet pas de dégager le lien entre l’algorithme et le concept. Dans une classe où l’étude des mathématiques est fondée sur la résolution de problèmes et l’utilisation de représentations variées, les élèves développent une compréhension de l’algorithme à travers l’approfondissement de concepts. Ainsi, l’accent est mis sur la compréhension plutôt que sur l’application de procédures.

La notion de fractions équivalentes est abordée pour la première fois en 5e année. Il est parfois difficile pour les élèves de saisir qu’une quantité peut porter plusieurs noms et être représentée par plusieurs nombres (p. ex., le nombre $\frac{2}{3}$ représente la même quantité que le nombre $\frac{6}{9}$; donc, on peut affirmer que $\frac{2}{3} = \frac{6}{9}$).

La compréhension des fractions équivalentes fait partie du raisonnement proportionnel que les élèves vont continuer à développer aux cycles intermédiaire et supérieur. Pour plus de renseignements à ce sujet, voir *Relations de proportionnalité* (p. 49-54) dans le fascicule 1(*Nombres naturels*) du présent guide.
Déterminer des fractions équivalentes, c'est déterminer des fractions qui représentent la même quantité. On cherche alors un nombre de « petites parties » d'un tout qui correspondent à un nombre particulier de « grandes parties » du même tout. Par exemple, si on cherche le nombre de seizièmes qui correspond à un quart \(\frac{1}{4} = \frac{2}{16} \) :

\[
\frac{1}{4} \quad \text{d'une tablette de chocolat} \quad \frac{4}{16} \quad \text{de la même tablette de chocolat}
\]

Les seizièmes sont 4 fois plus petits que les quarts. Dans un tout, il y a donc 4 fois plus de seizièmes que de quarts \((4 \times 4 = 16) \). Afin de représenter la même quantité, il doit y avoir 4 fois plus de parties identifiées \((4 \times 1 = 4) \). Donc, 4 seizièmes c'est équivalent à 1 quart. Voilà ce qui explique l'algorithme ci-contre.

On peut voir que l'inverse est aussi vrai. Puisque les quarts sont 4 fois plus grands que les seizièmes, il en faut 4 fois moins \((16 \div 4 = 4) \). Afin de représenter la même quantité, il doit y avoir 4 fois moins de parties identifiées \((4 \div 4 = 1) \). Donc, 1 quart c'est équivalent à 4 seizièmes. Voilà ce qui explique l'algorithme ci-contre.

Il est essentiel que les élèves du cycle moyen comprennent et puissent expliquer cette relation afin de donner un sens à l'algorithme utilisé pour déterminer des fractions équivalentes.
Or, il n’est pas toujours aussi facile de reconnaître des fractions équivalentes. Prenons, par exemple, $\frac{4}{6}$ et $\frac{6}{9}$. On ne voit pas l’équivalence comme le résultat d’une multiplication du numérateur et du dénominateur par un nombre entier, soit l’algorithme usuel. On peut réduire chaque fraction à sa plus simple expression pour constater que chacune est équivalente à $\frac{2}{3}$. On peut aussi faire appel à une représentation semi-concrète :

Cette représentation permet de voir l’aspect multiplicatif. On voit que les sixièmes sont une fois et demie plus grands que les neuvièmes. Pour passer des sixièmes aux neuvièmes, il faut donc $1,5 \times \frac{1}{2}$ fois plus de morceaux. Cependant, ce type de situation est d’un niveau plus avancé que celui attendu au cycle moyen.

La relation d’équivalence doit aussi être explorée par rapport aux fractions d’un ensemble. Dans l’image ci-contre, les élèves voient aisément que $\frac{12}{18}$ des bonbons sont emballés dans des papillotes mauves. Toutefois, ils ont de la difficulté à déterminer d’autres fractions équivalentes (p. ex., $\frac{2}{3}$, $\frac{4}{6}$, $\frac{6}{9}$). Il importe alors de présenter des activités qui leur permettent de manipuler les éléments de l’ensemble. Ainsi, les élèves peuvent les grouper en ensembles de 6, de 3 ou de 2 et déterminer des fractions équivalentes.

$\frac{2}{3}$ des bonbons sont emballés dans des papillotes mauves

$\frac{4}{6}$ des bonbons sont emballés dans des papillotes mauves

$\frac{6}{9}$ des bonbons sont emballés dans des papillotes mauves
L’expérience concrète avec les fractions équivalentes est le fondement du raisonnement proportionnel. On ne saurait lui accorder trop d’importance. C’est pourquoi l’enseignant ou l’enseignante doit planifier des activités qui reposent sur les notions informelles reliées aux fractions équivalentes.

Quelques remarques s’imposent par rapport à l’apprentissage des fractions équivalentes. Premièrement, il ne faut pas mettre l’accent sur le concept de fraction irréductible. Il est préférable de traiter ces fractions comme toutes les autres et de mettre l’accent sur les fractions équivalentes, c’est-à-dire sur les fractions qui sont des représentations différentes d’une même quantité. Deuxièmement, il faut accorder de l’importance au vocabulaire que l’on utilise et à la compréhension qu’en ont les élèves, ainsi qu’au vocabulaire que les élèves utilisent et comprennent. Par exemple, des élèves affirment que $\frac{3}{4}$ et $\frac{9}{12}$ sont des fractions équivalentes, mais que $\frac{3}{4}$ est plus grand ou plus petit que $\frac{9}{12}$, ou même qu’il s’agit d’une « meilleure » fraction. De même, certains élèves pensent que la fraction $\frac{2}{3}$ est plus petite que la fraction $\frac{4}{6}$, puisque $\frac{2}{3}$ a été obtenu lorsqu’on a « réduit » $\frac{4}{6}$. Il est important de déterminer la source des méprises des élèves et de chercher à corriger toute conception erronée.

Nombre fractionnaire et fraction impropre

L’apprentissage des fractions débute généralement avec l’utilisation de fractions propres, soit des fractions inférieures à 1. Au cycle moyen, les élèves rencontrent des fractions qui représentent des quantités supérieures à 1 (p. ex., en comptant des morceaux de tartes coupées en quarts, on peut compter 11 quarts qui restent). De telles situations les amènent aux fractions impropres (p. ex., $\frac{11}{4}$) et aux nombres fractionnaires (p. ex., $2\frac{3}{4}$). La situation d’apprentissage *Le pique-nique des fractions* (p. 147-170) vise le développement des concepts de fraction impropre et de nombre fractionnaire.

Il est important que les élèves reconnaissent qu’un nombre fractionnaire et la fraction impropre correspondante représentent la même quantité et que chaque nombre fractionnaire peut être exprimé sous forme de fraction impropre et vice versa.
Exemple

Si on a $2\frac{3}{4}$ tartes, on peut couper les 2 tartes en quarts, ce qui fait 2×4 quarts, soit 8 quarts. Si on ajoute les 3 autres quarts, on obtient un total de 11 quarts, ou $\frac{11}{4}$.

Si on a 11 quarts de tarte, on peut grouper les quarts de tarte, 4 à la fois, pour former des tartes entières. On peut ainsi former 2 tartes avec 8 morceaux. Il restera alors 3 quarts. On a donc $2\frac{3}{4}$ tartes.

Il est important que les élèves puissent comprendre les relations entre les nombres en cause au lieu d’utiliser une procédure prescrite. Cette compréhension peut être développée en présentant des activités en contexte et en encourageant les élèves à représenter concrètement les situations. Ainsi, l’enseignant ou l’enseignante guide les élèves dans le développement de leur compréhension.

L’activité *Les nombres fractionnaires et les fractions impropre* (p. 157-159) présente une démarche d’exploration en utilisant des mosaïques géométriques.

On devrait profiter du travail avec les fractions impropre pour faire des liens avec la division. On sait qu’une division, comme $5 \div 2$, peut être exprimée de façon symbolique, par $\frac{5}{2}$. Par exemple, 2 enfants veulent se partager 5 biscuits. Combien en recevront-ils chacun? La réponse est $2\frac{1}{2}$ biscuits chacun. Ou encore, on a 5 biscuits qu’on veut placer dans des sacs, 2 par sac. Combien y aura-t-il de sacs? La réponse est $2\frac{1}{2}$ sacs (2 sacs pleins et un sac à moitié plein). Dans les deux exemples, la division de 5 par 2 ($5 \div 2$) peut être exprimée de façon symbolique par $\frac{5}{2}$ et la réponse, soit $2\frac{1}{2}$, peut aussi être exprimée par $\frac{5}{2}$. L’expression numérique $\frac{5}{2}$, dans ce contexte, a donc deux sens, soit « 5 divisé par 2 » et « 5 demis ». De plus, l’exploration du nombre fractionnaire permet d’examiner le traitement du reste d’une division. Par exemple, si 4 amis veulent se partager 15 tablettes de chocolat, combien de tablettes auront-ils chacun? La division de 15 par 4 (15 ÷ 4) donne un reste de 3 qui sert dans la réponse $2\frac{3}{4}$.

Guide d’enseignement efficace des mathématiques, de la 4e à la 6e année

Numeration et sens du nombre - Fascicule 2
Les élèves du cycle moyen doivent comprendre les relations entre diverses notations d’une quantité, par exemple, les liens qui unissent des pourcentages, des nombres décimaux équivalents et des fractions équivalentes. Ils doivent reconnaître qu’un nombre décimal est une fraction ou un nombre fractionnaire dont le dénominateur est un multiple de 10 (10, 100, 1 000, 10 000, etc.). Par exemple, le nombre 0,5 est équivalent à la fraction $\frac{5}{10}$ et le nombre 2,63 est équivalent au nombre fractionnaire $2\frac{63}{100}$.

Les élèves apprennent également qu’un pourcentage est une façon d’écrire une fraction basée sur le fractionnement d’un tout en centièmes (p. ex., 75 % est l’équivalent de $\frac{75}{100}$). Des modèles tels que les grilles de 10×10 permettent aux élèves de visualiser les liens entre un pourcentage, la fraction correspondante et le nombre décimal correspondant.

Exemple

$$9 \% = \frac{9}{100} = 0,09$$

Lorsque les élèves maîtrisent bien cette relation, ils sont en mesure d’identifier des fractions et des nombres décimaux équivalents aux pourcentages (p. ex., 25 % est l’équivalent de $\frac{25}{100}$, 0,25 ou $\frac{1}{4}$) et de choisir la forme la plus propice au contexte. Par exemple, si une boutique offre un rabais de 20 % sur sa marchandise et qu’un polo coûte normalement 30 $, l’élève qui maîtrise la relation pourrait décider de convertir le 20 % en $\frac{2}{10}$ ou $\frac{1}{5}$ pour déterminer que 20 % de 30 $ est 6 $.

Encore une fois, il importe de mettre l’accent sur l’utilisation de modèles pour bien voir les relations entre les pourcentages, les fractions et les nombres décimaux plutôt que sur l’apprentissage formel d’une procédure pour effectuer la conversion d’une forme en une autre. Pour plus de renseignements au sujet des relations entre les fractions, les nombres décimaux et les pourcentages, consulter le fascicule 3 (*Nombres décimaux et pourcentages*) du présent guide.
Au cycle moyen, les interventions pédagogiques doivent viser le développement, chez les élèves, d’une plus grande polyvalence avec les nombres. Pour ce faire, l’enseignant ou l’enseignante doit présenter des situations d’apprentissage qui mettent en jeu divers nombres et doit mettre l’accent sur les diverses façons d’écrire ces nombres, tout en faisant réfléchir sur les avantages d’une notation par rapport à une autre. Cette façon de procéder permet aux élèves de développer leur sens du nombre et leur expertise à utiliser les nombres.

Il est alors souhaitable que les élèves aient l’occasion de mettre en relation des nombres présentés sous diverses formes, soit des nombres fractionnaires, des nombres décimaux, des fractions, etc.

Exemple

Inviter les élèves à placer divers nombres sur une droite numérique.

![Diagramme de nombres sur une droite numérique](image)
Énoncé 3 - Représentations des nombres

Passer d’une représentation d’un nombre à une autre permet de mieux comprendre les nombres.

Les représentations peuvent être perçues comme étant des outils facilitant l’établissement de liens entre le quotidien, la réalité et le monde des mathématiques.

(Post et Cramer, 1989, p. 223, traduction libre)

De nombreuses études démontrent que l'utilisation de modèles facilite l’acquisition des concepts liés aux fractions. Malheureusement, les élèves du cycle moyen n’ont pas toujours l’occasion d’explorer des concepts mathématiques à l’aide de matériel de manipulation et de modèles, et leur compréhension des fractions repose trop souvent sur l’obéissance à des règles appliquées à des symboles. Or, il est essentiel que les élèves du cycle moyen apprennent à représenter les fractions selon une variété de modèles, à créer des liens entre ces modèles et à passer aisément d’un modèle à un autre selon les contextes dans lesquels elles sont utilisées.

Dans cette section, la représentation de fractions est examinée à la lumière :
• de l’exploration de fractions;
• de situations propices à l’exploration de fractions;
• de représentations à l’aide de modèles;
• de représentations à l’aide de mots;
• de représentations symboliques.
EXPLORATION DE FRACTIONS

Baroody et Coslick (1998, p. 9-14 et 9-15) privilégient une « approche signifiante » dans l'apprentissage des fractions. Ils préconisent que cet apprentissage suive une progression qui fait passer les élèves de représentations informelles et concrètes à une représentation formelle et abstraite. Voici un aperçu de cette progression :

1. **Partager**

Toute activité qui engage les élèves dans une expérience signifiante de partage, sans faire référence de manière explicite à la terminologie ou à la symbolique, fournit une base concrète à la compréhension du concept de fraction. En commençant par une tâche courante du quotidien (p. ex., le partage de feutres ou de crayons de couleur pour un projet d’art), les élèves peuvent acquérir l’habileté à diviser un ensemble d’éléments en parties équivalentes. Par la suite, ils peuvent vivre des expériences qui font appel à des schèmes de pensée plus élaborés dans lesquels ils doivent fractionner un seul élément (p. ex., la division d’un carton en trois parties équivalentes pour faire un bricolage).

2. **Nommer des fractions représentées par des modèles**

Lorsqu’ils nomment la fraction associée à une situation, les élèves font un lien entre la fraction, la représentation utilisée et la situation, ce qui consolide leur sens de la fraction. Cette étape est donc importante. Par exemple, à la suite d’un problème où quatre (4) camarades doivent se partager douze (12) craquelins, on demande aux élèves de nommer explicitement la fraction qui détermine la part de chaque ami, soit un quart ($\frac{1}{4}$) de l’ensemble des craquelins.

![Diagramme de fractions](image.png)

un quart ($\frac{1}{4}$) des craquelins
3. **Créer des modèles représentant une fraction**

Il s’agit de l’opération inverse de celle présentée à l’étape précédente. Par exemple, les élèves doivent représenter de manière concrète ou semi-concrète une fraction telle que $\frac{4}{6}$.

![Diagramme de fraction 4/6]

4. **Reconnaître que la fraction peut revêtir le sens d’une division**

Une fois qu’ils maîtrisent les modèles, les mots reliés aux fractions ainsi que le concept de partie d’un tout, les élèves peuvent maintenant être initiés au symbolisme de la fraction utilisée pour représenter une division. Par exemple, la fraction $\frac{4}{10}$ peut représenter 4 parties d’un tout divisé en 10 parties équivalentes (sens d’une partie d’un tout), mais elle peut aussi représenter 4 objets partagés en 10 (sens d’une division). Pour plus de renseignements, voir *Autres concepts associés à la notation fractionnaire $\frac{a}{b}$* (p. 36-37).

5. **Créer et représenter des situations où la fraction revêt le sens d’une partie d’un tout ou celui d’une division**

Étant donné une fraction exprimée en mots (p. ex., deux tiers) ou symboliquement (p. ex., $\frac{2}{3}$), les élèves doivent créer et représenter des situations où elle revêt le sens d’une division et d’autres situations où elle revêt le sens d’une partie d’un tout. Le tableau suivant présente des exemples de situations possibles.

<table>
<thead>
<tr>
<th>Sens d’une partie d’un tout</th>
<th>Sens d’une division</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 parties d’un tout divisé en 3 parties équivalentes</td>
<td>2 objets partagés en 3</td>
</tr>
<tr>
<td>Deux tiers de mes six amis ont les cheveux bruns.</td>
<td>On partage 2 sous-marins entre 3 amis.</td>
</tr>
</tbody>
</table>

![Diagramme de situation 2/3 et 2/3]
6. **Se représenter mentalement une fraction**

L’enseignant ou l’enseignante encourage les élèves à se faire une idée mentale des fractions dans des situations données. Certains élèves le font assez naturellement, alors que d’autres doivent y être amenés. L’habileté à se représenter mentalement une quantité permet aux élèves de traiter les différentes représentations de façon plus souple et de développer des stratégies pour valider leur démarche et leur réponse dans le cadre de résolution de problèmes.

7. **Utiliser les fractions comme nombres**

Les élèves travaillent aisément avec les fractions, peu importe le contexte et même sans contexte.

SITUATIONS PROPICES À L’EXPLORATION DE FRACTIONS

Afin que les élèves développent un solide sens de la fraction, l’apprentissage doit s’effectuer en examinant les fractions en contexte dans le cadre de résolution de problèmes. L’enseignant ou l’enseignante peut alors s’inspirer de situations qui font partie du quotidien des élèves telles que :

- le partage (p. ex., découper des cartons en huitièmes et les partager en vue d’un bricolage ou séparer un ensemble d’autocollants en quarts pour un partage);
- l’interprétation de données et de diagrammes (p. ex., comprendre les données d’un sondage qui démontre qu’environ $\frac{3}{4}$ des participants ont un chien);
- l’interprétation de probabilité (p. ex., la probabilité que la somme de deux dés soit 2 est de $\frac{1}{36}$);
- la mesure (p. ex., préparer un plat qui requiert $\frac{3}{4}$ de tasse de farine, annoncer que la période de lecture est à neuf heures et quart et durera une demi-heure);
- les situations d’ensemble (p. ex., préciser que $\frac{3}{7}$ du groupe sont de sexe masculin et que $\frac{2}{7}$ sont des adultes);
- l’art (p. ex., observer que près de $\frac{3}{4}$ du dessin est en rouge, qu’en solfège la noire vaut $\frac{1}{4}$ de la ronde).
Les élèves doivent explorer et représenter les fractions dans des situations variées. Souvent les situations qui sont présentées aux élèves se limitent à l’identification d’une fraction d’une surface (Exemple 1) ou à la représentation d’une fraction sur une surface (Exemple 2).

Exemple 1
Identifie la fraction représentée.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[Image 1]</td>
<td>[Image 2]</td>
</tr>
</tbody>
</table>

Exemple 2
Colorie $\frac{3}{8}$ du cercle.

Trois types de situations telles que décrites dans le tableau ci-dessous amènent les élèves à explorer le concept de fraction.

<table>
<thead>
<tr>
<th>Situation à fraction manquante</th>
<th>Situation à partie manquante</th>
<th>Situation à tout manquant</th>
</tr>
</thead>
<tbody>
<tr>
<td>La partie d’un tout et le tout sont donnés. Il faut trouver la fraction.</td>
<td>Le tout et la fraction sont donnés. Il faut déterminer la partie du tout qui représente la fraction.</td>
<td>La partie du tout et la fraction sont données. Il faut déterminer le tout.</td>
</tr>
</tbody>
</table>

| Jared coupe une pizza en 6 parties égales. Il en mange 2 morceaux. Quelle fraction de la pizza Jared a-t-il mangée? | Josiane a reçu $\frac{1}{3}$ des 15 gommes à mâcher que sa grand-maman a achetées. Combien de gommes à mâcher Josiane a-t-elle reçues? | Voici le $\frac{2}{3}$ d’un segment. Trace le segment complet. |

L’annexe 4.7 (*Activité préparatoire facultative : Fraction, partie et tout*, p. 143-145) propose des pistes pour présenter des situations variées et approfondir le sens de la fraction en utilisant du matériel de manipulation.
REPRÉSENTATIONS À L’AIDE DE MODÈLES

À l’origine des difficultés des élèves avec les fractions, on retrouve trop souvent le peu d’importance accordée aux modèles concrets et semi-concrets. L’utilisation de modèles est essentielle à l’apprentissage des fractions et devrait se poursuivre tout au long du parcours scolaire. Or, parmi les modèles utilisés dans les écoles, le modèle du cercle est surexploité et souvent inapproprié dans certains contextes. L’enseignant ou l’enseignante doit donc voir à ce que les élèves apprennent à représenter les fractions de diverses façons selon les contextes. En général, on se réfère à trois modèles, le modèle de surface, le modèle de longueur et le modèle d’ensemble, chacun pouvant prendre des allures variées selon les outils et les matériaux utilisés.

Modèle de surface

Dans ce modèle, une surface ou une région est divisée en parties équivalentes. En classe, les modèles circulaires (tarte ou pizza) et les modèles rectangulaires peuvent être reproduits sur du carton rigide, puis plastifiés et coupés pour les exercices individuels. Les mosaïques géométriques, les géoplans, le papier à points et le papier quadrillé sont également de bons outils qui s’avèrent parfois plus appropriés à des situations particulières. Avec ce matériel, on devrait encourager les élèves à plier, à superposer, à fractionner et à découper pour développer leur sens de la fraction.
Voici des exemples de situations qui peuvent être représentées à l’aide d’un modèle de surface.

Situation à fraction manquante
Jared coupe une pizza en 6 parties égales. Il mange 2 morceaux. Quelle fraction de la pizza Jared a-t-il mangée? \(\frac{2}{6} \)

Représentation de la situation

Situation à partie manquante
Colorie \(\frac{3}{8} \) de ce rectangle.

Représentation de la situation

Situation à tout manquant
Voici \(\frac{2}{8} \) d’un rectangle.

Dessine le rectangle en entier.

Représentation de la situation
Modèle de longueur

Dans des situations qui portent sur la distance ou le temps, les modèles basés sur la longueur sont plus appropriés pour représenter les fractions (p. ex., réglettes, bandes de carton ou de papier, corde, segment de droite).

Voici des exemples de situations qui peuvent être représentées à l’aide d’un modèle de longueur.

Situation à fraction manquante

Lors d’un marathon de 15 km, Carlos a dû se retirer de la course au sixième kilomètre en raison d’une crampe. Quelle fraction du marathon avait-il complétée? ($\frac{2}{5}$ du marathon)

Représentation de la situation

Note : $\frac{6}{15}$ du marathon serait aussi une fraction acceptable comme réponse.
Situation à partie manquante
Michel a coupé $\frac{2}{5}$ d’une corde de 10 m. De quelle longueur est son bout de corde? (4 m)

Représentation de la situation

Situation à tout manquant
Voici les $\frac{2}{3}$ d’un segment.

Trace le segment complet.

Représentation de la situation
Modèle d’ensemble

L'utilisation d'un modèle d'ensemble requiert une bonne compréhension du concept de tout, puisque le tout n'est pas un élément, mais un ensemble d'éléments (p. ex., 12 objets). Les élèves ont du mal à comprendre ce modèle. Pourtant, il est nécessaire qu'ils se l'approprient, car on le retrouve dans beaucoup d'applications du quotidien. Souvent, les élèves ne saisissent le concept que superficiellement. Par exemple, d'un ensemble comprenant 9 jetons rouges et 6 verts, les élèves reconnaissent d'emblée que $\frac{9}{15}$ des jetons sont rouges, mais ils ont de la difficulté à reconnaître que $\frac{3}{5}$ des jetons sont rouges à moins qu'on leur présente les jetons organisés en groupes de 3. Afin de bien comprendre le modèle d'ensemble, il est essentiel que les élèves aient l'occasion d'utiliser du matériel concret qu'ils peuvent déplacer et regrouper.

Voici des exemples de situations qui peuvent être représentées à l'aide d'un modèle d'ensemble.

Situation à fraction manquante

Voici un ensemble de billes. Quelle fraction de l'ensemble est jaune?

($\frac{4}{5}$ des billes sont jaunes.)

Représentation de la situation

Note: $\frac{8}{12}$ et $\frac{2}{3}$ seraient aussi des fractions acceptables puisqu'elles sont équivalentes. Cette constatation ne doit pas découler de l'application d'un algorithme relié aux fractions équivalentes, mais des regroupements possibles des objets de l'ensemble.
Situation à tout manquant
Laurence collectionne des cartes de vedettes. À ce jour, Laurence a accumulé 36 cartes, soit $\frac{3}{4}$ des cartes de l’ensemble *Nos vedettes préférées*. Combien de cartes contient l’ensemble? (48 cartes)

Représentation de la situation

Situation à partie manquante
Il y a 24 poissons dans un aquarium, dont les $\frac{3}{4}$ sont rouges. Combien y a-t-il de poissons rouges dans l’aquarium? (18 poissons)

Représentation de la situation
Dans cette dernière situation, en raisonnant de la sorte et en utilisant du matériel concret, les élèves mettent à profit leur compréhension du sens de la fraction et appliquent des stratégies qui découlent de leur compréhension de la fraction comme fraction d’un ensemble. Ils peuvent reconnaître que le dénominateur a un rôle de diviseur (le nombre de parties) et que le numérateur a un rôle de multiplicateur. Ce type de raisonnement ne s’enseigne pas explicitement, mais il s’acquiert en situation de résolution de problèmes. À la suite de plusieurs expériences, les élèves peuvent généraliser et reconnaître que dans chaque situation, ils divisent le nombre naturel par le dénominateur pour déterminer la grandeur des groupes, et ils multiplient ensuite cette réponse par le numérateur pour déterminer la quantité dans le nombre de groupes en cause.

En présence d’un modèle d’ensemble et d’une situation à partie manquante, on cherche à déterminer le nombre d’éléments contenus dans cette partie. De fait, on calcule la fraction d’un ensemble. Par exemple, dans la situation précédente, l’élève devait calculer $\frac{3}{4}$ de 24. Ce type de calcul est très important puisqu’il fait partie d’applications du quotidien. En début d’apprentissage, il est important d’explorer des situations dont le résultat est un nombre naturel (p. ex., $\frac{1}{3}$ de 18, $\frac{2}{5}$ de 20, $\frac{3}{4}$ de 12). Ces situations permettent aux élèves d’approfondir leur compréhension et d’acquérir un certain savoir-faire. On peut ensuite explorer des situations dont le résultat est un nombre fractionnaire. Afin de résoudre ce genre de situations, plusieurs stratégies s’offrent aux élèves.

Exemple

Déterminer $\frac{2}{3}$ de 7 biscuits.

Le dénominateur indique le nombre de groupes à créer, en l’occurrence 3 groupes équivalents. On peut facilement placer 6 des biscuits dans les 3 groupes. Le 7^{ème} biscuit devra être coupé en 3 parties équivalentes.
Dans chaque groupe, il y a $2\frac{1}{3}$ biscuits.

Le numérateur d’une fraction indique le nombre de groupes ou de parties considérés. Ainsi, puisqu’on recherche $\frac{2}{3}$ des 7 biscuits, on choisit 2 des 3 groupes.

On peut donc conclure que $\frac{2}{3}$ de 7 biscuits, c’est $4\frac{2}{3}$ biscuits.

Afin d’établir le $\frac{2}{3}$ d’un ensemble de 7 objets ($\frac{2}{3}$ de 7), on peut aussi concevoir qu’il s’agit de la somme des $\frac{2}{3}$ de chaque élément de l’ensemble ($\frac{2}{3}$ de 1 + $\frac{2}{3}$ de 1).

Ainsi, on obtient $14\frac{1}{3}$. En regroupant les tiers, on obtient $4\frac{2}{3}$.

Note : Déterminer la fraction d’un ensemble (p. ex., $\frac{3}{4}$ de 12) peut s’apparenter à une multiplication par une fraction (p. ex., $\frac{3}{4} \times 12$). Cependant, au cycle moyen, il est préférable de miser sur le fait que les élèves cherchent à déterminer une fraction d’un ensemble ($\frac{3}{4}$ de 12), plutôt qu’à effectuer une opération ($\frac{3}{4} \times 12$). Pour plus de renseignements, voir Multiplication (p. 78-79).
Limites des modèles de fractions

Dans la planification de l’enseignement des fractions, il est important de prévoir l’utilisation de divers modes de représentation, comme divers modèles de surface, divers modèles de longueur et divers modèles d’ensemble. L’utilisation et la maîtrise de ces divers modèles rendent les élèves plus compétents.

Il est important, afin de démontrer leur compréhension d’une situation, que les élèves saisissent qu’un modèle peut représenter plus fidèlement une situation qu’un autre modèle. Par exemple, pour résoudre un problème qui traite de $\frac{3}{4}$ d’une course, un modèle de longueur représente plus fidèlement la situation qu’un modèle de surface.

En travaillant avec un modèle concret particulier, des élèves pourraient conclure par exemple, que $\frac{4}{7}$ n’existe pas parce que le matériel de manipulation ne leur permet pas de le représenter convenablement. Il est difficile, par exemple, de représenter $\frac{4}{7}$ d’une réglette jaune puisque la longueur de la réglette jaune équivaut à 5 réglettes de base (réglettes blanches). Or, on peut représenter $\frac{4}{7}$ en utilisant une autre longueur comme tout tel qu’illustré dans les exemples suivants.

La réglette mauve correspond à $\frac{4}{7}$ de la réglette noire.
La réglette brune correspond à $\frac{4}{7}$ du train orange-mauve.

En plus de choisir une situation et un modèle approprié, il est important de bien choisir les nombres, les quantités et les fractions selon la situation et selon l’objectif de l’activité. Par exemple, si on vise la compréhension de fractions équivalentes, on pourrait choisir de travailler avec un ensemble de 12 ou 24 éléments, ce qui permettrait de représenter des demis, des tiers, des quarts, des sixièmes et des douzièmes de l’ensemble, plutôt qu’un ensemble de 7 éléments qui ne permettrait, en général, que de représenter des septièmes.

REPRÉSENTATIONS À L’AIDE DE MOTS

Il ne faut pas négliger le rôle des mots dans la représentation des fractions. Lorsqu’on parle de trois quarts, le terme « trois » nous dit combien il y a de parties et le terme « quarts » nous renseigne sur la grandeur des parties ou le nombre de parties qui forment un tout. Les mots sont aussi utilisés pour expliquer un raisonnement relié aux fractions, par exemple : « J’ai partagé mes billes en six groupes égaux que je remets à six amis. Chaque ami reçoit alors un des six groupes ou un sixième de mes billes. »

REPRÉSENTATIONS SYMBOLIQUES

Il va de soi qu’une fraction est aussi représentée de façon symbolique. Rappelons que la fraction exprime une relation entre deux quantités, soit le nombre de parties équivalentes en question (le numérateur) et le nombre de parties qui forment un tout (le dénominateur). Cette relation est exprimée de façon symbolique par une barre de fraction placée entre les deux nombres. Bien que la barre oblique soit souvent utilisée dans la vie de tous les jours (p. ex., 2/3 de rabais), l’utilisation de la barre horizontale est préconisée pour éviter des ambiguïtés (p. ex., une lecture rapide de 2/3 pourrait donner 213; 1 1/3 ressemble à onze tiers).
GRANDE IDÉE 2 - SENS DES OPÉRATIONS

Dans le programme-cadre, il est précisé que « les élèves doivent développer des procédures qui leur permettront d’effectuer avec précision des opérations sur les nombres ». Ils doivent aussi acquérir « la capacité d’effectuer des estimations rapides et précises […] et de déceler des erreurs arithmétiques ».

(Ministère de l’Éducation de l’Ontario, 2005, p. 8)

Aperçu

Le sens des opérations combine la maîtrise d’une multitude de concepts et d’habiletés mathématiques reliés aux nombres et aux opérations. Dans une situation donnée, il permet de choisir les nombres et les opérations à utiliser avec suffisamment de souplesse et de polyvalence pour effectuer un calcul de façon efficace.

Les élèves qui ont un sens des opérations développé (Small, 2005a, p. 136) comprennent les opérations et l’effet qu’elles ont sur les nombres, établissent des liens entre les propriétés des opérations, reconnaissent que les opérations sont reliées entre elles et développent des stratégies de calcul. De plus, ils peuvent adapter ces stratégies à différentes situations et exprimer la relation entre le contexte d’un problème et les calculs effectués. Par exemple, ils sont à même d’expliquer pourquoi ils ont choisi d’effectuer leur calcul mentalement et de justifier l’efficacité de leur stratégie.

Au cycle primaire, les élèves ont développé un sens des opérations en traitant divers types de problèmes. Ces expériences leur ont permis de saisir des concepts liés aux diverses opérations (p. ex., la multiplication peut être perçue comme une addition répétée, l’addition est commutative) et de développer des stratégies pour effectuer ces opérations.
Au cycle moyen, les élèves poursuivent le développement du sens des opérations en traitant des nombres dans des situations plus complexes. Ils acquièrent une meilleure compréhension du sens de chaque opération et des relations qui existent entre elles. Ils deviennent de plus en plus à l’aise avec diverses stratégies de calcul et de résolution de problèmes, ce qui leur permet de faire des choix plus éclairés selon les situations. De plus, leur sens des opérations s’étend à l’application des opérations de base sur les fractions et les nombres décimaux.

<table>
<thead>
<tr>
<th>Grande idée 2 – Sens des opérations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Le sens des opérations permet de choisir les opérations à effectuer et de les exécuter efficacement selon la situation donnée.</td>
</tr>
</tbody>
</table>

Énoncé 1 – Quantité dans les opérations
Comprendre les opérations permet d’en reconnaître les effets sur les quantités.

Énoncé 2 – Relations entre les opérations
Comprendre les propriétés des opérations et les relations entre ces opérations permet de les utiliser avec plus de souplesse.

Énoncé 3 – Représentations des opérations
Connaître une variété de stratégies pour effectuer les opérations permet de les utiliser avec efficacité selon le contexte.
Énoncé 1 - Quantité dans les opérations

Comprendre les opérations permet d’en reconnaître les effets sur les quantités.

Puisque l’enseignement devrait insister sur le développement d’un jugement critique par rapport à la vraisemblance d’un résultat, il est essentiel de promouvoir le sens des opérations chez les élèves.

(Baroody et Coslick, 1998, p. 10-7, traduction libre)

Les fractions sont utilisées dans diverses tâches quotidiennes telles qu’en cuisine pour mesurer les ingrédients. Or, les opérations sur les fractions sont trop souvent perçues comme une série de règles qu’il faut apprendre et maîtriser. Cette perception a pour effet de promouvoir l’obéissance à des règles plutôt qu’une réelle compréhension des opérations. Ainsi, à la fin du cycle moyen, les élèves qui en sont à leurs premières armes avec les opérations sur les fractions risquent d’apprendre une liste de procédures dont le sens leur échappe et, par le fait même, de les oublier ou de les appliquer de façon erronée. Cet ensemble de règles et de procédures vient souvent embrouiller le sens de l’opération, comme le démontre cette interrogation d’un élève : « Puis-je additionner les fractions comme je le fais avec les nombres naturels? » Selon le programme-cadre, l’enseignement des opérations sur les fractions a lieu à partir de la 6e année et au cycle intermédiaire.

Dans la présente section, les points suivants sont abordés :
• l’apprentissage des opérations fondamentales sur les fractions;
• la nature des opérations fondamentales;
• l’estimation du résultat d’une opération.

APPRENTISSAGE DES OPÉRATIONS FONDAMENTALES

L’acquisition d’habiletés en calcul doit reposer sur l’acquisition d’un sens des opérations, sinon ces habiletés restent à un niveau superficiel et mécanique. Van de Walle et Folk (2005, p. 244 et 245) suggèrent des lignes directrices pour guider l’enseignement des opérations sur les fractions.
Présenter des tâches simples en contexte
Les principes qui guident le développement de stratégies personnelles de résolution de problèmes s’appliquent autant aux fractions qu’aux nombres naturels.

Faire le lien entre les opérations sur les nombres naturels et celles sur les fractions
Les élèves ont déjà acquis une compréhension solide de l’addition et de la soustraction et ils ont certaines notions de la multiplication et de la division. Il est important de faire des liens entre les opérations sur les nombres naturels et celles sur les fractions. Par exemple, l’addition de 3 huitièmes et de 2 huitièmes est la même que celle de 3 bonbons et de 2 bonbons. Seule la notation est différente et plus complexe. De même, les élèves qui possèdent des représentations justes de la multiplication (p. ex., 4×5 peut être lu « 4 fois 5 » et être représenté par $5 + 5 + 5 + 5$) comprendront la multiplication d’une fraction par un nombre naturel (p. ex., $4 \times \frac{3}{8}$ peut être lu « 4 fois $\frac{3}{8}$ » et être représenté par $\frac{3}{8} + \frac{3}{8} + \frac{3}{8} + \frac{3}{8}$). Le concept sous-jacent est donc le même et il importe de faire le lien entre les deux situations. Pour plus de renseignements, voir Énoncé 2 – Relations entre les opérations (p. 84-89).
Valoriser les procédures informelles pour développer des stratégies

Il est important de valoriser les procédures informelles, car elles contribuent au développement du sens du nombre et du sens des opérations. Dans des situations qui impliquent des opérations, plusieurs élèves font appel à des algorithmes personnels plutôt qu’aux procédures. Par exemple, l’élève qui a un bon sens du nombre pourrait aborder l’addition de $\frac{7}{8}$ d’un sandwich et de $\frac{4}{8}$ d’un autre sandwich identique de cette façon : « Je sais qu’avec $\frac{7}{8}$ d’un sandwich, il me manque $\frac{1}{8}$ d’un sandwich pour avoir un sandwich complet. Alors, si j’ajoute $\frac{1}{8}$ à $\frac{7}{8}$, j’ai un entier et il me reste $\frac{3}{8}$. Donc, $\frac{7}{8} + \frac{4}{8} = \frac{11}{8}$. »

Explorer les opérations à l’aide de plusieurs modèles

Il est important pour les élèves d’apprendre les concepts liés aux fractions dans diverses situations à l’aide d’une variété de modèles tels que des modèles de surface, des modèles de longueur et des modèles d’ensemble. Il en est de même pour l’apprentissage des opérations sur les fractions. Plusieurs exemples d’utilisation de modèles pour effectuer un calcul sont présentés dans Énoncé 3 – Représentations des opérations (p. 90-102).

NATURE DES OPÉRATIONS FONDAMENTALES

L’application d’une opération sur des nombres a pour effet de réorganiser les quantités en jeu. Il est très important que les élèves comprennent cette facette de la quantité lorsqu’ils utilisent l’une ou l’autre des quatre opérations.

Les élèves du cycle moyen ont eu l’occasion d’apprendre cette relation par rapport aux quatre opérations sur les nombres naturels. Dans l’addition, deux quantités sont mises ensemble pour former une nouvelle quantité. Dans une soustraction, on enlève une quantité d’une autre. On peut aussi reconnaître que l’on cherche une quantité par laquelle deux quantités données diffèrent. Dans une multiplication, on cherche une nouvelle quantité qui provient de la réunion de groupes égaux ou de quantités égales. Dans une division, on sépare une quantité en parties égales. Mais que l’on ajoute, compare, réunit ou sépare, il est important de connaître et de comprendre que l’opération a un effet sur les quantités.
Lorsque des fractions sont en jeu, il devient encore plus important de s’attarder au sens de l’opération, de choisir un modèle approprié et de réfléchir aux quantités. Il faut beaucoup de temps pour construire un sens des opérations sur les fractions, car il faut réfléchir aux numérateurs, aux dénominateurs et aux touts en cause. Il faut donner aux élèves l’occasion de travailler avec des modèles concrets et semi-concrets et de développer un sens de l’ordre de grandeur des résultats avant de passer aux opérations mettant en cause les représentations symboliques.

Addition et soustraction

Selon le programme-cadre, les élèves de 6e année voient l’addition et la soustraction de fractions ayant un dénominateur commun. Il s’agit essentiellement de l’addition et de la soustraction d’objets ou de quantités de même nature. Par exemple, dans $\frac{3}{7} + \frac{2}{7} = \frac{5}{7}$, l’addition représente simplement 3 septièmes $+ 2$ septièmes $= 5$ septièmes, tout comme 3 pommes $+ 2$ pommes $= 5$ pommes. Dans cet exemple, les septièmes sont comptés de la même façon que des pommes. On a 3 morceaux d’une certaine taille et 2 morceaux de la même taille, ce qui donne 5 morceaux de cette taille. Effectuer l’addition de fractions devient plus complexe lorsque les fractions ont des dénominateurs différents, puisque les morceaux n’ont pas la même taille et ne sont pas de même nature. Ces opérations sont étudiées au cycle intermédiaire.

La soustraction se traite de la même façon. Par exemple, si j’enlève 3 billes d’un sac qui en contient 5, il en reste 2. De même, si je soustrais 3 huitièmes de 5 huitièmes, il reste 2 huitièmes ($\frac{5}{8} - \frac{3}{8} = \frac{2}{8}$).

L’addition de deux nombres naturels a pour effet d’augmenter les deux quantités initiales, tandis que la soustraction de deux nombres naturels a pour effet de diminuer la quantité initiale. Il est important que les élèves comprennent qu’il en est de même pour l’addition et la soustraction de fractions. Cela leur permet de comprendre l’incohérence de certaines réponses obtenues à partir de procédures erronées. Par exemple, l’élève qui, pour calculer $\frac{2}{3} + \frac{1}{3}$, additionne les numérateurs et les dénominateurs et obtient $\frac{3}{6}$, devrait voir que cette réponse, qui est égale à $\frac{1}{2}$, est inférieure à une des fractions initiales, soit $\frac{2}{3}$.

Grande idée 2 - Sens des opérations
Les types de problèmes relatifs à l’addition et à la soustraction (problèmes d’ajout, problèmes de retrait, problèmes de comparaison et problèmes de réunion) présentés dans le fascicule 1 (*Nombres naturels*) du présent guide (p. 81-84), s’appliquent tout aussi bien aux fractions. Voici deux exemples.

Exemples

| Problème d’ajout | Mila a mangé $\frac{2}{8}$ de la tarte, alors que Pierre a mangé $\frac{3}{8}$. Quelle fraction de la tarte a été mangée par les deux enfants?
| | Cette situation se traduit par $\frac{2}{8} + \frac{3}{8} = \frac{5}{8}$. |
| Problème de comparaison | Mila a pris $\frac{2}{8}$ d’un pichet d’eau pour arroser sa plante. Pierre a pris $\frac{5}{8}$ du pichet pour arroser la sienne. Quelle fraction représente la différence entre les quantités d’eau utilisées par Pierre et Mila?
| | Cette situation se traduit par $\frac{5}{8} - \frac{2}{8} = \frac{3}{8}$. |

Multiplication

Au cycle moyen, les élèves ont déjà un bagage de connaissances sur la multiplication. En effet, depuis la 2e année, ils explorent des concepts reliés à la multiplication à l’aide de matériel concret, de la calculatrice, d’illustrations et de symboles. En 6e année, la multiplication de fractions est limitée à la multiplication d’une fraction par un nombre naturel. Ce type de multiplication peut être compris en le reliant à l’addition répétée. Ainsi, les élèves saisissent facilement que $3 \times \frac{1}{2}$, qu’on peut lire « 3 fois un demi », est une multiplication qui peut être représentée par l’addition répétée, soit $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$. Plusieurs stratégies pour effectuer une multiplication sont présentées aux pages 95 à 97. Elles doivent être explorées pour aider les élèves à comprendre la multiplication des fractions.

Par contre, il est plus difficile de donner un sens à la multiplication d’un nombre naturel par une fraction (p. ex., $\frac{1}{2} \times 3$). Ces situations sont explorées au cycle intermédiaire. Il existe un lien entre le concept de multiplication par une fraction et celui de fraction d’un ensemble. La fraction d’un ensemble est un concept relié au concept de fraction. Par exemple, en 2e année, les élèves apprennent le sens de $\frac{1}{2}$ et $\frac{1}{4}$ d’un groupe de 12 objets. Plus tard, ils consolident leur compréhension du concept de fraction d’un ensemble en l’appliquant à d’autres fractions. Au cycle intermédiaire, en examinant le concept de multiplication d’un nombre naturel par une fraction, ils apprendront que la fraction d’un ensemble ($\frac{2}{5}$ de 6) est reliée à la multiplication et que cette situation peut être représentée par une
multiplication ($\frac{2}{3} \times 6$). Cependant, il y a un danger à présenter cette multiplication en 6e année, car on risque de forcer l’obéissance à des règles. Il faut un bon degré d’abstraction pour accepter qu’une situation comme $\frac{1}{2}$ de 12 soit considérée comme une multiplication.

Les mathématiciens et les mathématiciennes ont décidé qu’il s’agissait d’une multiplication en procédant à peu près comme suit :

- on peut considérer 4×6 comme 4 groupes de 6;
- on peut considérer 2×8 comme 2 groupes de 8.

On n’a aucune difficulté à étendre ce constat à des nombres fractionnaires supérieurs à 2 :

- on peut considérer $4\frac{1}{2} \times 6$ comme 4 groupes et demi de 6;
- on peut considérer $2\frac{1}{2} \times 12$ comme 2 groupes et un tiers de 12.

On généralise cette situation (ce qui implique une abstraction, puisque le groupe n’est pas « multiplié » comme tel) en ajoutant que :

- on veut considérer $1\frac{1}{2} \times 6$ comme un groupe et demi de 6;
- on veut considérer $\frac{1}{2} \times 6$ comme un demi-groupe de 6.

Ainsi, c’est à la suite d’une interprétation de l’opération que $\frac{1}{2}$ de 6 est considéré comme une multiplication de $\frac{1}{2}$ et de 6. Cette interprétation implique une généralisation et une abstraction qui ne sont pas généralement accessibles aux élèves de 6e année. À cette année d’études, en s’attardant aux concepts et à une mise en contexte, il est plus pertinent d’approfondir le sens de la fraction d’un ensemble en effectuant un calcul (p. ex., $\frac{2}{3}$ de 8) que de s’orienter vers la multiplication d’un nombre naturel par une fraction ($\frac{2}{3} \times 8$).

Division

En 6e année, selon le programme-cadre, on s’en tient à la division de fractions par des nombres naturels. L’exploration de la division, comme celle des autres opérations, doit miser sur les représentations concrètes et semi-concrètes et non sur les algorithmes. Les élèves peuvent alors réactiver leurs connaissances antérieures et saisir le sens de l’opération.
Afin de comprendre une division, il est essentiel d’examiner le sens de la division et la nature des nombres qui la composent. Une division a le sens de partage lorsqu’on cherche la taille des groupes; elle a le sens de groupement lorsqu’on cherche le nombre de groupes.

Exemple

8 ÷ 2 = 4

<table>
<thead>
<tr>
<th>Sens de partage</th>
<th>On veut placer 8 pommes dans 2 paniers. Combien y aura-t-il de pommes par panier? (On obtient 4 pommes par panier.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sens de groupement</td>
<td>On veut disposer 8 pommes en groupes de 2. Combien y aura-t-il de groupes? (On obtient 4 groupes.)</td>
</tr>
</tbody>
</table>

C’est en relation avec ces deux sens que la division d’une fraction par un nombre naturel peut être explorée. Les situations qui sont présentées aux élèves s’apparentent généralement au sens de partage, puisque ces situations peuvent plus aisément être comprises par les élèves. Par exemple, la division de \(\frac{2}{3} \) par 4 (\(\frac{2}{3} \div 4 \)) est l’opération à effectuer afin de résoudre le problème suivant : « Il reste \(\frac{2}{3} \) d’une pizza qu’on veut partager entre 4 enfants. Quelle fraction de la pizza chacun recevra-t-il? »

Quel raisonnement les élèves peuvent-ils suivre afin d’effectuer l’opération?
Il semble assez clair que l’on peut couper chaque tiers en deux parties égales et obtenir quatre morceaux, mais il est peut-être moins clair, pour les élèves, que chaque partie est égale à un sixième d’une pizza, c’est-à-dire que $\frac{2}{3} \div 4 = \frac{1}{6}$.

Pour le voir, il faut aussi couper le tiers manquant en deux parties égales.

D’autres situations de division peuvent revêtir le sens de groupement, mais il s’agit de situations plus abstraites. Par exemple, on reçoit des pizzas dans des sacs, 4 pizzas par sac. Après le repas, il reste deux tiers ($\frac{2}{3}$) d’une pizza que je replace dans un des sacs. Ce sac n’est donc pas rempli à sa pleine capacité.

De telles situations sont plus abstraites puisque l’on rencontre des fractions de groupes plutôt que des groupes complets. On place les $\frac{2}{3}$ de pizza dans un sac, mais le sac n’est pas plein. Pour être plein, il faudrait qu’il contienne 4 pizzas, soit l’équivalent de 12 tiers de pizza. Puisqu’il ne contient que $\frac{2}{3}$ de pizza, le sac n’est rempli qu’aux $\frac{2}{12}$ ou au $\frac{1}{6}$ de sa capacité. Donc, $\frac{2}{3} \div 4 = \frac{1}{6}$.

Il peut être plus facile de comprendre le sens de groupement en utilisant un nombre fractionnaire. Par exemple, si on a 8 $\frac{2}{3}$ pizzas et qu’on veut les placer 4 par boîte, on aura $2\frac{1}{6}$ boîtes, soit 2 boîtes pleines et $\frac{1}{6}$ d’une troisième boîte.

Dans une division, la fraction peut aussi être le diviseur. Il s’agit cependant de divisions qui sont explorées au cycle intermédiaire. Ainsi, la division d’un nombre naturel par une fraction (p. ex., $2 \div \frac{1}{3}$) se représente bien en utilisant le sens de groupement. Par exemple, si on a 2 réglisses et que l’on veut remettre à chaque enfant $\frac{1}{3}$ d’une réglisse, on procède à une division puisqu’il faut séparer une quantité (2 réglisses) en des quantités égales ($\frac{1}{3}$ de réglisse) pour déterminer le nombre de quantités égales ou de groupes qui peuvent être créés (6 enfants...
recevront $\frac{1}{3}$ de réglisse chacun). Dans ce cas, il est important de reconnaître que le quotient exprime un nombre de sections, soit des tiers et non une quantité d’objets (régllisses).

Les modèles de représentation, présentés à la page 98 du présent fascicule, devraient être explorés par les élèves afin qu’ils puissent comprendre la division d’une fraction par un nombre naturel. Au cycle intermédiaire, les élèves construiront leurs nouveaux savoirs sur les connaissances acquises lors de l’exploration des divisions avec des fractions au cycle moyen.

ESTIMATION DU RÉSULTAT D’UNE OPÉRATION

L’estimation aide à développer le sens du nombre et le sens des opérations, puisqu’elle fait appel à la pensée analytique et à la visualisation des nombres. Ainsi, en situation d’apprentissage, les élèves doivent avoir de nombreuses occasions d’estimer le résultat d’opérations avant même qu’on leur demande de déterminer des résultats exacts. Par exemple, si on demande aux élèves si le résultat de $2 \times \frac{7}{8}$ est inférieur ou supérieur à 2, on leur donne l’occasion de recourir à leur sens de la fraction ($\frac{7}{8}$ est inférieur à 1) et leur sens des opérations (il s’agit donc de deux fois « moins que 1 », alors le résultat est inférieur à 2).

Exemples de problème

1) Théo a laissé un sac de graines de tournesol sur une table de pique-nique. Un écureuil flairant la bonne affaire décide de ronger le sac pour avoir accès aux graines et faire ses provisions automnales. Il vide rapidement $\frac{1}{12}$ du sac. Plus tard dans la journée, un tamia rayé décide de faire de même et réussit à prendre $\frac{10}{2}$ des graines de tournesol qui restaient. Ensemble, les rongeurs ont-ils pris moins de la moitié ou plus de la moitié des graines de tournesol?

2) Marion est l’élève responsable de nourrir Cléo, le poisson rouge de la classe. Son enseignante lui recommande de donner à Cléo $\frac{1}{4}$ de cuillerée à thé de flocons par jour. Sachant qu’il reste 3 cuillerées à thé de flocons dans le contenant, Marion en aura-t-elle assez pour nourrir Cléo pendant une semaine?
Les stratégies pour estimer les résultats d’une opération comprenant des fractions sont les mêmes qu’avec les nombres naturels. Elles proviennent du sens du nombre (p. ex., arrondissement ou décomposition d’un nombre) et du sens des opérations (p. ex., application des propriétés des opérations) et incluent l’utilisation des fractions repères et des fractions équivalentes. Deux fractions peuvent être « arrondies » à des fractions repères (p. ex., à 0, $\frac{1}{4}$, $\frac{1}{2}$, $\frac{3}{4}$, 1), ce qui permet ensuite d’estimer leur somme ou leur différence. Par exemple, pour estimer la différence entre $\frac{7}{12}$ et $\frac{1}{15}$, on peut reconnaître que $\frac{7}{12}$ est un peu plus grand qu’un demi et que $\frac{1}{15}$ est près de 0; on estime alors que la différence se situe autour de $\frac{1}{2}$.

L’estimation permet de réfléchir au sens de la fraction et au sens de l’opération. Ainsi, l’élève doté d’un bon sens du nombre estime que le résultat $\frac{14}{16} + \frac{17}{19}$ sera près de 2, puisque la valeur de chacune des fractions se rapproche de l’unité ou de l’entier. Dans les derniers exemples, l’objectif n’est pas d’effectuer des calculs avec des fractions ayant des dénominateurs différents, mais plutôt de développer l’habileté d’estimation, le sens de l’opération ainsi que le sens de la fraction.

L’estimation permet de juger la vraisemblance du résultat d’un calcul en donnant une idée de l’ordre de grandeur de la réponse. Par exemple, si un ou une élève estime que $7 \times \frac{3}{4}$, c’est environ 6 (puisque $\frac{3}{4}$ est un peu moins que 1, le résultat sera moins de 7) et qu’il ou elle utilise ensuite une stratégie erronée pour obtenir sa réponse (p. ex., multiplier le numérateur et le dénominateur par 7 pour obtenir $\frac{21}{28}$), il ou elle peut reconnaître que ce résultat est faux puisque $\frac{21}{28}$ n’est pas près de 6. Peu importe le calcul à effectuer, les élèves doivent développer l’habitude et l’habileté à estimer la réponse avant d’effectuer un calcul ou un algorithme afin d’avoir une idée du résultat attendu.
Énoncé 2 - Relations entre les opérations

Comprendre les propriétés des opérations et les relations entre ces opérations permet de les utiliser avec plus de souplesse.

L’attention hâtive qui est donnée à l’apprentissage des règles pour les calculs sur les fractions a des répercussions fâcheuses. Aucune de ces règles ne peut aider l’élève à réfléchir aux opérations ou à en dégager un sens.

(Van de Walle et Folk, 2005, p. 244, traduction libre)

Les élèves doivent participer à des activités signifiantes pour approfondir leur sens des opérations, que ce soit pour effectuer des calculs dans un cadre scolaire ou pour évaluer ou analyser une situation de la vie quotidienne. L’enseignant ou l’enseignante doit accorder une importance accrue à l’intention pédagogique, aux activités proposées et à la progression de ses élèves dans le but d’accroître la qualité de leur raisonnement. Il est important de comprendre la nature du changement à la suite d’une opération. En fait, les habiletés reliées à l’estimation de calculs reposent sur la compréhension de la nature des changements.

Dans la présente section, les points suivants sont traités :
• les liens entre les opérations sur les nombres naturels et celles sur les fractions;
• le calcul mental.
LIENS ENTRE LES OPÉRATIONS SUR LES NOMBRES NATURELS ET CELLES SUR LES FRACTIONS

Les relations entre les opérations sont semblables, que l’on traite de nombres naturels ou de fractions. Ainsi, l’addition et la soustraction sont des opérations inverses, tout comme le sont la multiplication et la division. Par exemple,
\[
\frac{9}{16} - \frac{2}{16} = \frac{7}{16} \quad \text{et} \quad \frac{7}{16} + \frac{2}{16} = \frac{9}{16},
\]
tout comme \(6\frac{1}{2} + 3 = 2\frac{1}{6}\) et \(3 \times 2\frac{1}{6} = 6\frac{1}{2}\).

Des activités qui misent sur l’expérience concrète et sur la résolution de problèmes permettent aux élèves d’échanger avec leurs pairs et l’enseignant ou l’enseignante et, par le fait même, d’approfondir leur connaissance et leur compréhension des relations entre les opérations. Ils en viennent à utiliser des stratégies qui témoignent de leur compréhension. Dans un contexte de résolution de problèmes, les élèves peuvent reconnaître que les propriétés des opérations qu’ils connaissent de leurs expériences avec les nombres naturels s’appliquent aussi aux fractions. Voici quelques exemples des propriétés des opérations.

Commutativité de l’addition : Selon cette propriété, on peut effectuer une addition dans l’ordre que l’on veut. Sa notation symbolique (p. ex., \(\frac{1}{5} + \frac{2}{5} = \frac{2}{5} + \frac{1}{5}\)) est plus abstraite.

Commutativité de la multiplication : Selon cette propriété, on peut effectuer une multiplication dans l’ordre que l’on veut (p. ex., \(6 \times 2\frac{1}{2}\) ou \(2\frac{1}{2} \times 6\)). Elle n’est pas aussi évidente que la commutativité de l’addition et elle doit faire l’objet d’attention sur une longue période de temps pour être assimilée. Il faut donc prendre le temps nécessaire afin que les élèves puissent saisir que le résultat de l’opération est le même malgré le fait que les deux expressions représentent deux situations différentes.

Exemple

- 6 groupes de 2 biscuits et demi
- 2 groupes et demi de 6 biscuits

Par contre, la commutativité de la multiplication est plus évidente si on utilise une disposition rectangulaire.
Exemple

6 rangées de 2 carreaux et demi

2 rangées et demie de 6 carreaux

Associativité de l’addition : Selon cette propriété, si on doit calculer $4 + \frac{1}{2} + \frac{1}{2}$ par exemple, on peut additionner de gauche à droite pour obtenir $4\frac{1}{2} + \frac{1}{2}$, puis 5, ou bien additionner les deux fractions pour obtenir 4 + 1, puis 5. De façon symbolique, on écrit $(4 + \frac{1}{2}) + \frac{1}{2} = 4 + (\frac{1}{2} + \frac{1}{2})$.

Distributivité de la multiplication sur l’addition : Selon cette propriété, si on a par exemple 3 groupes de $2\frac{1}{4}$ tartes, on peut multiplier 3 fois 2 et 3 fois $\frac{1}{4}$ séparément. De façon symbolique, on écrit $3 \times (2 + \frac{1}{4}) = (3 \times 2) + (3 \times \frac{1}{4})$.

Note : Les propriétés des opérations sont davantage détaillées sous *Propriétés des opérations* (p. 102-107) dans le fascicule 1 (*Nombres naturels*) du présent guide.

Dans le cas de la multiplication d’une fraction par un nombre naturel, il est important de mettre l’accent sur le sens de la multiplication qui peut être associé à l’addition répétée. Prenons, par exemple, la situation suivante : « De combien de cartons l’élève qui doit distribuer un demi-carton à quatre camarades aura-t-il...
besoin? » En comprenant la situation, les élèves reconnaissent qu’il y a multiplication d’une quantité, soit $4 \times \frac{1}{2}$, qui peut être représentée par une addition répétée, soit $\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$. Pour trouver la réponse, les élèves se représentent la situation de façon mentale ou semi-concrète ou utilisent leurs connaissances de l’addition des fractions en question. Certains élèves peuvent visualiser que deux parties égales d’un premier carton sont distribuées à deux camarades et que deux parties égales d’un deuxième carton sont distribuées aux deux autres camarades. Il lui faut donc deux cartons. D’autres peuvent penser à la représentation abstraite suivante : « Il faut 4 fois un demi-carton. Je sais que $4 \times \frac{1}{2}$ est égal à 2, car deux demis font 1. Il me faut donc 2 cartons. » D’autres peuvent illustrer le problème comme suit, puis regrouper mentalement les morceaux deux par deux pour constater qu’il y a l’équivalent de deux cartons complets.

CALCUL MENTAL

Dans la vie quotidienne, les élèves font souvent face à des situations impliquant des opérations sur les fractions, par exemple, les soldes d’un magasin lorsque les articles sont offerts à moitié prix, ou la manchette du journal qui indique que le nombre d’inscriptions dans un programme collégial a augmenté de un tiers. Dans de telles situations, il faut souvent effectuer un calcul mental. Selon le contexte, on cherche soit une estimation, soit une réponse exacte.

Un calcul mental repose sur l’utilisation des relations entre les nombres et entre les opérations. Il exige une certaine flexibilité de raisonnement en ce qui a trait aux calculs à effectuer. Au cours d’un calcul mental, les nombres sont souvent décomposés (p. ex., $\frac{4}{5} = 4 \times \frac{1}{5}$) et les opérations sont interprétées ou modifiées (p. ex., pour calculer $12 \times \frac{5}{6} = 10$, on peut effectuer $12 \div 6$ pour déterminer $12 \times \frac{1}{6} = 2$, puis $2 \times 5 = 10$). Il est évident que pour pouvoir effectuer mentalement une opération avec des fractions, les élèves doivent avoir une bonne compréhension des fractions, des opérations et des opérations sur les fractions.
Exemple
Si au sein d’un groupe de 165 élèves de 6ᵉ année, 2 élèves sur 5 sont admis au programme scolaire Sports-Études, comment peut-on estimer mentalement le nombre d’élèves admis au programme?

Il faut déterminer \(\frac{2}{5} \) de 165.
165, c’est environ 150;
\(\frac{1}{5} \) de 150, c’est 30 puisque 5 x 30 = 150
ou 150 ÷ 5 = 30.

Donc \(\frac{2}{5} \) de 150, c’est 2 x 30,
soit 60. Alors \(\frac{2}{5} \) de 165 élèves,
c’est environ 60 élèves.

Il est possible de poursuivre le raisonnement afin d’obtenir la réponse exacte.

J’ai déjà calculé \(\frac{2}{5} \) de 150, qui est égal à 60.
Il me reste à calculer \(\frac{2}{5} \) des 15 autres élèves
(165 – 150). \(\frac{1}{5} \) de 15, c’est 3 puisque 15 ÷ 5 c’est 3. Donc \(\frac{2}{5} \) de 15, c’est 2 x 3, soit 6.
En tout, 66 élèves (60 + 6) sont admis au programme Sports-Études.

Pour calculer ou estimer des pourcentages mentalement, il peut être avantageux de les remplacer par des fractions. Par exemple, pour estimer la valeur d’un rabais de 30 % accordé sur un article de 75 $, on peut utiliser la fraction \(\frac{1}{3} \), qui correspond à environ 30 %. Ainsi, un calcul mental du tiers de 75 $ nous permet de déterminer que le rabais est d’environ 25 $.
Comme il est précisé dans le fascicule 1 (Nombres naturels) du présent guide, le calcul mental ne correspond pas à la visualisation de l’algorithme usuel. Au contraire, procéder de la sorte avec les fractions nuit souvent à l’efficacité du calcul. Par exemple, en suivant une recette, on doit réduire les portions de moitié. Il est plus logique de se servir de son sens du nombre que de suivre les règles pour le calcul avec les fractions. Ainsi, la moitié de \(\frac{2}{3} \) de tasse d’eau, c’est la moitié de 2 tiers, soit \(\frac{1}{3} \) de tasse.

Cette réflexion est préférable à l’utilisation d’un algorithme \(\frac{\frac{2}{3}}{2} = \frac{2}{3} \times \frac{1}{2} = \frac{2}{6} = \frac{1}{3} \). Cette utilisation de règles ne témoigne pas d’un sens du nombre ou d’un sens des opérations. Il s’agit tout simplement de l’application d’une procédure qui est souvent incomprise, d’où l’importance pour les élèves de développer différentes stratégies personnelles de calcul mental. Ceci leur permettra de choisir la stratégie appropriée en tenant compte de leur force personnelle en calcul, des nombres en jeu et de la représentation qu’ils se font de la situation.

L’échange mathématique qui suit des exercices de calcul mental, et qui porte sur le choix, les ressemblances, les différences, les forces et les faiblesses des diverses stratégies, aide à la formation de liens entre les concepts et les stratégies et permet aux élèves d’acquérir de la flexibilité par rapport aux choix à faire dans diverses situations.
Énoncé 3 - Représentations des opérations

Connaître une variété de stratégies pour effectuer les opérations permet de les utiliser avec efficacité selon le contexte.

Il est admis que c’est la transition entre les diverses représentations d’idées mathématiques et les transitions entre les expériences quotidiennes et leurs représentations symboliques qui rendent ces idées significantes pour les enfants.

(Post et Cramer, 1989, p. 224, traduction libre)

Pour bien intégrer les concepts mathématiques et les utiliser adéquatement, les élèves doivent être souvent exposés à de nombreux modèles et à une diversité de représentations concrètes et semi-concrètes du même concept. Ainsi, la fréquence et la diversité contribuent à construire la compétence des élèves.

Pour opérer sur les fractions, les élèves doivent, comme avec les nombres naturels, d’abord analyser les données et le contexte pour déterminer si une approximation est appropriée ou s’il faut une réponse précise. Ensuite, ils doivent choisir la méthode de calcul la plus appropriée. Ils peuvent opter pour un calcul mental, une méthode papier-crayon ou l'utilisation d’une calculatrice. Enfin, ils procèdent aux calculs proprement dits.
Dans ce qui suit, il est question des différentes représentations que les élèves du cycle moyen peuvent utiliser pour effectuer des additions, des soustractions, des multiplications et des divisions avec des fractions. Précisons qu’il ne s’agit que d’un échantillon de la multitude de représentations qui peuvent être mises de l’avant par les élèves pour témoigner de leur compréhension des problèmes et des opérations.
ADDITION ET SOUSTRACTION

Lorsqu’on travaille avec les fractions, le plus important et parfois le plus difficile, c’est de bien représenter le tout. En 6e année, les élèves additionnent et soustrayent des fractions ayant des dénominateurs communs. Avec du matériel concret ou semi-concret, l’effet visuel de l’addition et de la soustraction est renforcé. En puisant dans leurs expériences avec les nombres naturels et en se forçant un sens de l’opération, les élèves peuvent reconnaître, par exemple, que l’ajout de deux tiers (\(\frac{2}{3}\)) à un tiers (\(\frac{1}{3}\)) donne trois tiers (\(\frac{3}{3}\)), soit le tout.

Or, il n’est pas toujours clair pour les élèves que l’addition se fait par rapport au numérateur. Dans une situation où il reste trois huitièmes (\(\frac{3}{8}\)) d’une pizza et deux huitièmes (\(\frac{2}{8}\)) d’une autre pizza de même grandeur, on cherche combien il en reste tout. Est-ce qu’on compte des huitièmes ou des seizièmes, puisque les pizzas comptaient seize morceaux en tout?

Au cycle intermédiaire, les élèves progressent vers des problèmes comportant des fractions avec dénominateurs différents. Les élèves de 6e année peuvent néanmoins explorer ce type de problème dans un contexte d’estimation, à l’aide de représentations concrètes et semi-concrètes. Par exemple, Alexis et son frère Mycolas ont chacun une tablette de chocolat. Les tablettes sont identiques. Alexis a mangé le tiers (\(\frac{1}{3}\)) de sa tablette et Mycolas a mangé les trois quarts (\(\frac{3}{4}\)) de la sienne. Quelle quantité de chocolat leur reste-t-il en tout? Cette situation représente certes un défi pour les élèves, mais s’ils ont recours à des repères, à une
visualisation de la situation ou à une représentation semi-concrète, ils sont en mesure de conclure qu’il reste presque une tablette au complet.

Alexis a mangé \(\frac{1}{3} \) de sa tablette

Mycolas a mangé \(\frac{3}{4} \) de sa tablette

Cette situation est représentée à l’aide d’un modèle de surface. La forme rectangulaire est plutôt naturelle, puisqu’elle ressemble à une tablette de chocolat. Cependant, il ne faut pas négliger d’autres représentations, comme le modèle de longueur.

L’exemple suivant porte sur la distance et fait appel aux nombres fractionnaires :

Dans le cadre d’un entraînement pour une course, William doit parcourir au moins \(6 \frac{1}{10} \) km par jour. Ce matin, avant d’aller à l’école, il a couru \(3 \frac{3}{10} \) km. Combien de kilomètres doit-il parcourir après l’école?

Puisque la situation traite d’une mesure linéaire, les élèves peuvent avoir recours à un modèle de longueur tel que la droite numérique. Il s’agit d’abord de situer \(6 \frac{1}{10} \) sur une droite numérique graduée (à gauche) ou une droite numérique non graduée (à droite), ensuite de soustraire 3 de \(6 \frac{1}{10} \) :
puis de soustraire la partie fractionnaire, soit $\frac{3}{10}$ ou 3 fois $\frac{1}{10}$.

Ainsi, on peut conclure que William doit parcourir $2\frac{8}{10}$ km. On a donc $6\frac{1}{10} - 3\frac{3}{10} = 2\frac{8}{10}$. Bien que le modèle de longueur représente fidèlement la situation, les élèves pourraient représenter l’opération en utilisant un modèle de surface comme illustré ci-dessous.

Les élèves doivent aussi explorer des situations comprenant des fractions improprees. Par exemple, l’opération $\frac{10}{4} + \frac{3}{4}$ pourrait être représentée à l’aide du modèle suivant.

Ce modèle permet d’exprimer le résultat sous la forme $\frac{13}{4}$, si on compte les quarts, ou $3\frac{1}{4}$, si on tient compte des tots.
MULTIPLICATION

Les élèves abordent en 6e année la multiplication de fractions par des nombres naturels (p. ex., \(7 \times \frac{3}{4}\)). Aux cycles primaire et moyen, les élèves ont reconnu le lien entre la multiplication et une addition répétée. Comme démontré dans les sections précédentes, ce lien peut aussi être appliqué dans le cas de multiplications de fractions par des nombres naturels. Or, pour mettre l’accent sur la multiplication comme opération, il est utile de la représenter de diverses façons. Par exemple, l’opération \(4 \times \frac{1}{2}\) qui est lue « quatre fois un demi » peut être représentée par 4 groupes de \(\frac{1}{2}\) (Figure 1) ou à l’aide d’une disposition rectangulaire (Figure 2). Pour plus de renseignements au sujet des dispositions rectangulaires, consulter le fascicule 1 (Nombres naturels) du présent guide (p. 134-137).

\[
\begin{array}{c}
\text{Figure 1} \\
\end{array}
\]

\[
\begin{array}{c}
\text{Figure 2} \\
\end{array}
\]

Afin d’effectuer une multiplication d’une fraction par un nombre naturel, les élèves développent des stratégies personnelles en utilisant divers modèles. Prenons la situation suivante :

\textit{Lors d’une journée d’activités, on veut que les élèves vivent six activités différentes d’une durée de trois quarts d’heure chacune. Quelle sera la durée de l’ensemble des activités?}

Pour résoudre ce problème, on peut reconnaître qu’on peut effectuer l’opération \(6 \times \frac{3}{4}\). Afin d’en déterminer le résultat, diverses stratégies de calcul sont possibles telles que :

• effectuer l’addition répétée;

\[
\frac{3}{4} + \frac{3}{4} + \frac{3}{4} + \frac{3}{4} + \frac{3}{4} = \frac{18}{4} = 4 \frac{2}{4}
\]
• utiliser une représentation concrète;

• utiliser une représentation semi-concrète;

• utiliser une disposition rectangulaire;

• effectuer des calculs.

À la suite de l’utilisation de divers modèles, certains élèves remarquent souvent qu’ils peuvent déterminer le produit à l’aide de calculs. Par exemple, afin de calculer $6 \times \frac{3}{4}$, je multiplie d’abord 6 par 3, puis je divise ce résultat par 4 et j’obtiens $\frac{18}{4}$ ou $4 \frac{2}{4}$.

Dénombrer le nombre de quarts ($\frac{18}{4}$) et déterminer le nombre fractionnaire correspondant ($4 \frac{2}{4}$).

Soustraire les quarts manquants (soit $\frac{6}{4}$ ou $1 \frac{2}{4}$) des 6 unités et déterminer que c’est $4 \frac{2}{4}$ ($6 - 1 - \frac{2}{4}$).
Cette dernière stratégie quoiqu’elle soit efficace ne doit pas être appliquée sans compréhension. Il est important que les élèves réalisent que lorsqu’ils effectuent la multiplication 6×3, ils déterminent le nombre de morceaux. Puisque ces morceaux sont des quarts, ils ont alors déterminé qu’il y a un total de 18 quarts ($\frac{18}{4}$).

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>4</th>
<th>5</th>
<th>7</th>
<th>8</th>
<th>10</th>
<th>11</th>
<th>13</th>
<th>14</th>
<th>16</th>
<th>17</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>15</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Par la suite, lorsqu’ils effectuent $18 \div 4$, ils déterminent le nombre de groupements de 4 quarts. Ainsi, ils déterminent qu’il y a 4 touts et il reste deux quarts, d’où le résultat $4\frac{2}{4}$.

DIVISION

Deux genres de situations de divisions impliquant les fractions sont à la portée des élèves au cycle moyen : la division d’une fraction par un nombre naturel et la division d’un nombre naturel par une fraction. Quoique seulement le premier de ces deux genres de situation soit mentionné de façon précise dans le programme-cadre pour la 6e année, l’exploration avec les élèves du deuxième genre de situation permet d’approfondir le sens de la fraction.

Division d’une fraction par un nombre naturel : On retrouve plus souvent la division d’une fraction par un nombre naturel (p. ex., $\frac{3}{4} \div 5$) dans des situations de partage. En 6e année, on peut commencer par des situations dans lesquelles le numérateur est divisible par le diviseur (p. ex., $\frac{6}{9} \div 3$, $\frac{3}{4} \div 3$, $\frac{4}{9} \div 2$, $\frac{12}{20} \div 4$). Les exemples ci-dessous montrent différentes façons d’obtenir le résultat de la division de $\frac{6}{9}$ par 3.
Exemples de représentations de $\frac{6}{9} + 3 = \frac{2}{9}$

<table>
<thead>
<tr>
<th>Modèle de surface</th>
<th>Modèle de longueur</th>
<th>Modèle d’ensemble</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trois amies veulent se partager $\frac{2}{9}$ d’une tarte. Combien chacune recevra-t-elle?</td>
<td>Trois amies s’en vont à l’école et il reste $\frac{6}{9}$ de la distance à parcourir. À tour de rôle, chacune aura le lecteur MP3 qu’elles partagent. Sur quelle fraction de la distance totale chaque amie écoutera-t-elle de la musique?</td>
<td>Dans un sac, il y avait des bonbons. Pierre en a mangé et il reste $\frac{6}{9}$ des bonbons. Trois amies veulent se les partager. Quelle fraction des bonbons chaque amie recevra-t-elle?</td>
</tr>
</tbody>
</table>

| ![Diagram](image1) | ![Diagram](image2) | ![Diagram](image3) |

Les élèves peuvent ensuite s’attaquer à des situations de divisions plus complexes, où le numérateur n’est pas divisible par le diviseur (p. ex., $\frac{2}{3} \div 6$, $\frac{3}{5} \div 12$). La complexité vient du fait que la situation est plus difficile à représenter. Pour réussir, il faut bien comprendre que le partage dans ces situations implique de subdiviser les parties. L’opération est plus facile à comprendre lorsqu’elle est présentée en situation. Par exemple :

Les 6 membres d’une famille veulent se partager les $\frac{2}{3}$ d’une tarte.

Quelle fraction de tarte chacun aura-t-il?

La question éclaircit ce que l’on cherche, c’est-à-dire une fraction d’une tarte complète. En reconnaissant que la division est associée au concept de partage, on peut représenter la situation de façon symbolique par $\frac{2}{3} \div 6$. Afin de représenter l’opération, on peut illustrer $\frac{2}{3}$ d’une tarte.
Comment partage-t-on ces deux tiers? On peut diviser chaque tiers en trois morceaux égaux pour un total de six morceaux égaux (Figure 1). On peut aussi diviser le premier tiers en six morceaux qui seront partagés, puis faire de même avec le deuxième tiers (Figure 2).

Dans les problèmes de division, la principale difficulté éprouvée par les élèves est de trouver la quantité en relation avec le tout. Dans la situation précédente \(\frac{2}{3} + 6\), la fraction \(\frac{2}{3}\) agit temporairement comme un tout, car elle doit être divisée en 6. Par contre, on doit exprimer la réponse par rapport au tout auquel \(\frac{2}{3}\) se rapporte (la tarte). Ainsi, d’après les représentations ci-dessus, un ou une élève détermine que la solution est 1 morceau ou 2 morceaux selon le partage effectué, mais a du mal à reconnaître qu’il s’agit de 1 ou de 2 morceaux du tout. Mais comment sait-on quelle fraction de tarte chacun reçoit? Pour le savoir, il faut aussi diviser le tiers manquant.

Ainsi, selon le premier fractionnement, chacun reçoit un morceau, soit \(\frac{1}{9}\) de tarte (Figure 3). Selon le deuxième, chacun reçoit deux morceaux, soit \(\frac{2}{18}\) de tarte (Figure 4). Cependant, il s’agit de la même quantité puisque \(\frac{1}{9}\) et \(\frac{2}{18}\) sont des fractions équivalentes.

Considérons la même division \(\frac{2}{3} + 6\) issue d’une situation qui se rapporte plutôt au modèle de longueur. Par exemple :

On veut couper \(\frac{2}{3}\) d’un rouleau de corde en 6 sections. Quelle fraction du rouleau de corde chaque section représentera-t-elle?
Lorsque l’on saisit le sens du problème, on peut reconnaître qu’on doit effectuer $\frac{2}{3} \div 6$. Afin de déterminer le quotient, comme dans l’exemple précédent, on peut procéder de deux façons :

Ainsi, on peut déterminer que chacune des 6 sections correspond à $\frac{1}{9}$ ou $\frac{2}{18}$ du rouleau de corde.

L’activité Partageons! (p. 182-183) permet l’exploration de divisions d’une fraction par un nombre naturel.

Division d’un nombre naturel par une fraction : Dans le cas d’une division d’un nombre naturel par une fraction, la division prend généralement le sens de groupement. Ainsi, l’analogie de la soustraction répétée est de mise puisqu’il s’agit de séparer des parties. Par exemple, dans la division de 2 par $\frac{1}{4}$ ($2 \div \frac{1}{4}$), en faisant $2 - \frac{1}{4} - \frac{1}{4} - \frac{1}{4} - \frac{1}{4} - \frac{1}{4} - \frac{1}{4} - \frac{1}{4}$, on peut créer 8 groupes de $\frac{1}{4}$.

Cependant, le groupe créé est plutôt abstrait puisqu’il s’agit d’un groupe qui est une fraction d’un tout. Les questions « Combien de $\frac{1}{4}$ peuvent être créés avec 2 tout? » et « Combien de fois $\frac{1}{4}$ va-t-il dans 2? » peuvent aider à se représenter l’opération. L’apprentissage de ce type de division avec des fractions, quoiqu’il s’agisse d’un nombre naturel divisé par une fraction, peut être exploré informellement en fin de cycle.
En début d’apprentissage, il est possible d’explorer des situations avec des fractions unitaires (p. ex., $4 \div \frac{1}{3} = 12$, $2 \div \frac{1}{5} = 10$, $3 \div \frac{1}{4} = 12$) avant d’aborder les opérations ayant une fraction non unitaire. Dans les deux situations, il est préconisé que le quotient soit un nombre naturel (p. ex., $6 \div \frac{3}{5} = 10$, $6 \div \frac{2}{3} = 9$).

Exemple 1

\[
4 \div \frac{1}{3} = 12
\]

<table>
<thead>
<tr>
<th>Modèle de surface</th>
<th>Modèle de longueur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combien de morceaux de $\frac{1}{3}$ de tarte peuvent être offerts si on dispose de 4 tartes?</td>
<td>Mathieu emballe des cadeaux dans de petites boîtes. Il lui faut $\frac{1}{3}$ de mètre de ruban pour créer une boucle décorative. S’il y a 4 mètres de ruban, combien de boucles peut-il créer?</td>
</tr>
</tbody>
</table>

![Diagramme de surface](image1.png)

![Diagramme de longueur](image2.png)
Exemple 2

\[6 \div \frac{3}{5} = 10 \]

<table>
<thead>
<tr>
<th>Modèle de surface</th>
<th>Modèle de longueur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afin de créer un dallage, chaque équipe a besoin de l'équivalent des (\frac{3}{5}) des carrés d'une feuille. Combien d'équipes peuvent effectuer la tâche si on dispose de 6 feuilles?</td>
<td>Une enseignante a une corde de 6 m et veut la couper en sections de (\frac{3}{5}) de mètre chacune. Combien de sections pourra-t-elle créer?</td>
</tr>
</tbody>
</table>

Au cycle intermédiaire, les élèves explorent formellement les divisions d'un nombre naturel par une fraction et cheminent vers des divisions plus complexes, où le quotient n'est pas un nombre naturel (p. ex., \(5 \div \frac{3}{4} = \frac{20}{3} = 6 \frac{2}{3} \)), ainsi que vers les divisions d'une fraction par une fraction.
Les élèves doivent se rendre compte que « … les mathématiques sont beaucoup plus qu’un ensemble de notions théoriques et pratiques isolées. Les enseignantes et enseignants encouragent les élèves à découvrir de quelles façons les mathématiques sont reliées à leurs expériences quotidiennes afin de leur permettre d’en comprendre l’utilité et la pertinence, à l’école et ailleurs. »

(Ministère de l’Éducation de l’Ontario, 2005, p. 19)

Afin de faciliter l’apprentissage des concepts liés aux fractions, l’enseignant ou l’enseignante doit fournir aux élèves des occasions d’établir des liens entre ces concepts et :

- des expériences de la vie quotidienne;
- des concepts dans les autres domaines de mathématiques;
- des concepts dans les autres matières;
- différentes professions.

Voici quelques exemples d’activités qui permettent de créer des liens ainsi que des exemples de professions qui demandent une bonne connaissance des fractions.

Liens avec des expériences de la vie quotidienne

Exemple 1 : Les marmitons

Cette activité permet aux élèves de se rendre compte qu’en modifiant le rendement d’une recette, on doit multiplier ou diviser des quantités qui sont parfois exprimées en fraction.

L’enseignant ou l’enseignante présente d’abord à la classe la situation suivante en ces termes :

Afin d’amasser les fonds nécessaires pour leur sortie de fin d’année, les élèves de 6e année de l’école À tire-d’aile ont décidé de vendre des pâtisseries. Florence et ses amies ont choisi de préparer des muffins santé aux carottes, aux pommes et aux raisins. En lisant la recette, elles se rendent compte qu’une recette ne donne que huit muffins. Or, elles veulent en préparer deux douzaines.
L'enseignant ou l'enseignante remet une copie de la recette aux élèves et en profite pour attirer leur attention sur le fait que les quantités sont exprimées en utilisant des mesures impériales.

Muffins santé aux carottes, aux pommes et aux raisins
Rendement : 8 muffins

<table>
<thead>
<tr>
<th>Ingrédients</th>
<th>Étapes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 2/3 tasses de farine</td>
<td>1. Préchauffer le four à 375 °F.</td>
</tr>
<tr>
<td>1/2 tasse de raisins secs dorés</td>
<td>3. Dans un autre bol, mélanger tous les ingrédients secs : farine, sucre, levure chimique, bicarbonate de soude, cannelle.</td>
</tr>
<tr>
<td>1 1/4 tasse de pommes, coupées en dés</td>
<td>4. Ajouter les raisins, les pommes et les carottes aux ingrédients secs. Brasser.</td>
</tr>
<tr>
<td>1 3/4 tasse de carottes râpées</td>
<td>5. Incorporer petit à petit les ingrédients liquides aux ingrédients secs tout en remuant.</td>
</tr>
<tr>
<td>1 1/2 c. à thé de levure chimique</td>
<td>6. Verser le mélange dans un moule à 8 muffins préalablement graissé.</td>
</tr>
<tr>
<td>2 1/2 c. à thé de bicarbonate de soude</td>
<td>7. Cuire pendant 10 à 15 minutes.</td>
</tr>
<tr>
<td>3 œufs</td>
<td></td>
</tr>
<tr>
<td>3/4 tasse d’huile végétale</td>
<td></td>
</tr>
<tr>
<td>1 c. à thé d’essence de vanille</td>
<td></td>
</tr>
<tr>
<td>3/4 c. à thé de cannelle</td>
<td></td>
</tr>
<tr>
<td>1/2 tasse de lait</td>
<td></td>
</tr>
</tbody>
</table>

L’enseignant ou l’enseignante groupe les élèves par deux et leur demande d’ajuster les quantités pour que l’équipe de Florence puisse préparer deux douzaines de muffins. Il ou elle anime ensuite un échange afin de faire ressortir les difficultés encourues, les stratégies mises en œuvre, leurs différences et leurs ressemblances. Il est important de faire remarquer que la température et le temps de cuisson ne doivent jamais être modifiés dans une cuisson au four puisque la grosseur des muffins n’a pas été modifiée.

L’enseignant ou l’enseignante propose ensuite de réduire la recette et alloue du temps pour permettre aux élèves de tenter de remanier la liste d’ingrédients afin qu’elle donne le nombre de muffins désiré. Tout comme pour la préparation précédente, cet exercice est suivi d’un bref échange pour faire ressortir les stratégies utilisées.

Comme il s’agit ici d’une véritable recette, on peut inviter les élèves à préparer, en classe ou à la maison, ces muffins santé, en modifiant la quantité d’ingrédients afin de répondre à un besoin précis.
Exemple 2 : Quelle clé choisir?

Cette activité permet aux élèves d’examiner l’utilisation de fractions pour définir les mesures d’outils (clés, boulons, écrous).

L’enseignant ou l’enseignante invite les élèves à s’asseoir en cercle autour du matériel disposé sur le sol. Il ou elle explique aux élèves que le système métrique est le système de mesures généralement utilisé au Canada, mais que dans certains domaines comme en construction, le système impérial est encore couramment utilisé.

L’enseignant ou l’enseignante montre ensuite aux élèves une clé sur laquelle est inscrite une fraction et explique que la mesure de l’ouverture de cette clé correspond à une fraction d’un pouce. Par exemple, la clé sur laquelle la fraction $\frac{3}{4}$ est inscrite a une ouverture de 1 1/4 po. Au besoin, il ou elle montre un pouce sur une règle ou sur un ruban gradué et précise que le pouce est une mesure représentant approximativement 2,5 cm. Ensuite, il ou elle explique que la clé est l’outil utilisé afin de serrer un écrou et qu’il faut s’assurer que la mesure de l’ouverture de la clé correspond à la largeur de l’écrou.

L’enseignant ou l’enseignante présente aux élèves les fractions correspondant aux clés et aux écrous apportés. Les fractions peuvent être écrites au tableau ou sur une grande feuille de papier.

Ensuite, il ou elle choisit un écrou (partiellement vissé sur un boulon), le fait circuler parmi les élèves et leur demande d’estimer sa largeur en pouce afin de déterminer quelle clé doit être utilisée pour le visser ou le serrer.

L’enseignant ou l’enseignante invite un ou une élève à essayer de serrer l’écrou en question en utilisant la clé de son choix. Si la clé ne correspond pas avec précision à l’écrou, l’élève doit indiquer si la clé choisie est trop grande ou trop petite. Par exemple, l’élève (photo ci-dessous) explique qu’il a choisi la clé de 5/8 po, mais qu’elle est un peu trop grande. (La mesure recherchée est de 9/16 po.)

Matériel

- boulons et écrous de dimensions variées préalablement agencées
- ensemble de clés identifiées en mesure impériale (exemples de mesures les plus courantes : $\frac{3}{16}$ po, $\frac{1}{4}$ po, $\frac{5}{16}$ po, $\frac{3}{8}$ po, $\frac{7}{16}$ po, $\frac{1}{2}$ po, $\frac{9}{16}$ po, $\frac{5}{8}$ po, $\frac{11}{16}$ po, $\frac{3}{4}$ po)
Si le premier essai est infructueux, les élèves tentent de déterminer à nouveau quelle clé devrait être utilisée. L’enseignant ou l’enseignante invite d’autres élèves à faire un essai, et ce, jusqu’à ce que la clé correspondant à l’écrou soit trouvée, puis reprend la même démarche avec d’autres écrous.

Tout au long de l’activité, l’enseignant ou l’enseignante amène les élèves à comparer des fractions (p. ex., l’ouverture de la clé de $\frac{3}{4}$ po est plus grande que celle de la clé de $\frac{3}{8}$ po) et à justifier leur choix de clé (p. ex., « Lors du dernier essai, la clé de $\frac{1}{2}$ po était trop grande; je vais donc essayer celle de $\frac{7}{16}$ po, puisque $\frac{7}{16}$ po c’est un peu moins que $\frac{1}{2}$ po »).

Pour terminer l’activité, l’enseignant ou l’enseignante demande aux élèves de placer les fractions en ordre croissant (p. ex., $\frac{3}{16}$, $\frac{1}{4}$, $\frac{5}{16}$, $\frac{3}{8}$, $\frac{7}{16}$, $\frac{1}{2}$, $\frac{9}{16}$, $\frac{5}{8}$, $\frac{11}{16}$, $\frac{3}{4}$) et de vérifier leur réponse en plaçant les clés correspondantes en ordre de grandeur.

Note : Afin de rendre la tâche plus authentique, au lieu d’écrous et de boulons en vrac, on peut présenter une bicyclette (ou tout autre objet qui comprend plusieurs écrous) et demander, par exemple, aux élèves d’identifier la clé à utiliser pour desserrer l’écrou pour monter le siège ou pour enlever la roue.

Liens avec des concepts dans les autres domaines de mathématiques

Exemple 1 : Mesurons une moitié

Cette activité intègre des concepts en numération et sens du nombre ainsi qu’en mesure.

Il faut préalablement préparer une série d’instruments de mesure à être mis à la disposition des élèves au cours de l’activité (p. ex., balances à plateaux, papier quadrillé, rubans gradués, règles, ficelle, tasses à mesurer, bêchers).

L’enseignant ou l’enseignante présente la situation suivante :

Aujourd’hui, vous tenterez de déterminer la moitié d’une quantité d’objets sans les compter. Pour y arriver, vous pourrez avoir recours aux divers instruments de mesure. Votre objectif sera de trouver le plus de façons possible pour déterminer la moitié d’une quantité.

L’enseignant ou l’enseignante groupe les élèves par trois et remet à chaque équipe une certaine quantité de pâtes alimentaires, de sable, de riz, de carrés, de papier, de cubes emboîtables ou toute autre chose quantifiable. Il faut
allouer suffisamment de temps pour leur permettre de réussir à déterminer la moitié de leur quantité en utilisant différentes stratégies.

Pour y arriver, ils peuvent par exemple, selon les objets reçus :
• se servir d’une balance et utiliser la masse pour séparer les objets en deux parties égales;
• regrouper les objets sur un papier quadrillé afin d’utiliser l’aire et de là en déterminer la moitié;
• aligner les objets et mesurer la longueur pour ensuite la diviser en deux;
• construire deux tours identiques et comparer le volume de chacune ou leur hauteur.

À la fin de l’activité, l’enseignant ou l’enseignante anime un échange dont l’objectif est de présenter les nombreuses stratégies utilisées et de porter un regard critique sur l’efficacité de chacune. Cette activité peut être prolongée en demandant aux élèves de déterminer une autre fraction de leur quantité sans dénombrer (p. ex., $\frac{1}{4}$, $\frac{3}{8}$, $\frac{1}{3}$, $\frac{2}{3}$).

Exemple 2 : Sondage cinéma

Cette activité intègre des concepts en numération et sens du nombre ainsi qu’en traitement des données et probabilité.

L’enseignant ou l’enseignante présente les résultats de deux sondages à propos du genre de film préféré, l’un effectué auprès des élèves du cycle moyen et l’autre auprès de leurs parents. Voici les résultats obtenus.

<table>
<thead>
<tr>
<th>Préférence des parents</th>
<th>Préférence des élèves</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quel genre de film préférez-vous?</td>
<td>Quel genre de film préfères-tu?</td>
</tr>
<tr>
<td>Films d’action</td>
<td>$\frac{3}{10}$</td>
</tr>
<tr>
<td>Films de science-fiction</td>
<td>$\frac{1}{10}$</td>
</tr>
<tr>
<td>Films historiques</td>
<td>$\frac{2}{10}$</td>
</tr>
<tr>
<td>Comédies</td>
<td>$\frac{4}{10}$</td>
</tr>
</tbody>
</table>

L’enseignant ou l’enseignante anime l’échange mathématique au cours duquel les élèves présentent et défendent leurs conclusions. Il ou elle cherche à faire ressortir les ressemblances et les différences entre les représentations des résultats du sondage et leurs avantages respectifs.

Note : On peut inviter les élèves à placer leur bande de papier autour du modèle de cercle correspondant. S’ils ont disposé, sur la bande et sur le cercle, les genres de films dans le même ordre, les sections seront alignées. Cela permet de démontrer, qu’en fait, il s’agit de deux représentations des mêmes fractions qui sont faites avec deux modèles différents. De plus, la bande et le cercle fractionnés en 100 parties peuvent servir à représenter des pourcentages.

Liens avec des concepts dans les autres matières

Exemple 1 : Maquette à l’échelle

Cette activité intègre des concepts en numération et sens du nombre, en sciences et technologie ainsi qu’en éducation artistique.

L’enseignant ou l’enseignante explique qu’un fabricant de jouets lui a remis le croquis d’une de leurs maisons de poupée. Il ou elle présente aux élèves le croquis en s’attardant à ses dimensions et au fait qu’il est composé de prismes rectangulaires.
Ensuite, l'enseignant ou l'enseignante les invite à créer une maquette de cette maison qui comporte des mesures réduites de moitié (le rapport entre les mesures de la maquette et celles du croquis est de 1 à 2). Selon l’année d’études, les habiletés des élèves et les matériaux disponibles, d’autres rapports peuvent être donnés pour réaliser la maquette; par exemple, les mesures sont réduites au quart (rapport 1 : 4), aux deux tiers (rapport 2 : 3) ou même doublées (rapport 2 : 1).

Après avoir formé des équipes de deux, l'enseignant ou l'enseignante leur distribue des grandes feuilles cartonnées (p. ex., carton bristol), des ciseaux, des règles, de la colle et du ruban-cache ou ruban adhésif, et leur alloue suffisamment de temps pour accomplir la tâche demandée (du temps peut aussi être accordé pour la décoration, si possible). Afin d’effectuer la tâche, les élèves peuvent tracer sur de grandes feuilles cartonnées le développement des deux prismes à base rectangulaire. Ensuite, ils les découpent et construisent leur maquette.

La tâche terminée, l’enseignant ou l’enseignante anime un échange en groupe classe qui met en valeur les diverses stratégies utilisées pour construire les maquettes.

Note : Cette activité pourrait être réalisée en se basant sur d’autres sortes de plans tels que le plan d’un pont, d’une tour, d’une machine simple ou d’un aménagement paysager.
Exemple 2 : Saynètes mathématiques

Cette activité intègre des concepts en numération et sens du nombre, en français ainsi qu’en éducation artistique.

L’enseignant ou l’enseignante explique aux élèves qu’ils auront l’occasion de représenter des fractions dans le cadre de petites saynètes. Il ou elle leur propose un thème comme « La joute de soccer-baseball » et formule trois phrases comportant des fractions qui sont reliées à ce thème. Par exemple : « Je crois que nous allons marquer un point, car \(\frac{2}{3} \) des buts sont occupés par des joueurs de mon équipe. Les \(\frac{3}{5} \) des joueurs de mon équipe sont des garçons. Lors de la joute, \(\frac{1}{6} \) des lancers furent ratés. » Il ou elle précise ensuite que la prochaine étape consiste à créer une saynète en y intégrant les trois phrases composées.

Après avoir formé des groupes de trois élèves, l’enseignant ou l’enseignante leur assigne un thème ou leur demande d’en choisir un d’une banque préalablement préparée et leur alloue suffisamment de temps pour composer les trois phrases présentant une fraction et préparer la courte saynète s’y rattachant. Les élèves exposent tour à tour leur saynète et l’enseignant ou l’enseignante saisit l’occasion pour discuter des quantités représentées par des fractions dans les diverses saynètes.

Liens avec des professions

<table>
<thead>
<tr>
<th>Exemple de profession</th>
<th>Courte description du travail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urbaniste et planificateur ou planificatrice</td>
<td>Il ou elle recueille et analyse des données sur les facteurs démographiques, économiques, juridiques, politiques, culturels, sociologiques, physiques ou autres. Les données prennent souvent la forme d’une fraction ou d’un rapport.</td>
</tr>
<tr>
<td>Statisticien ou statisticienne</td>
<td>Il ou elle élabore des techniques statistiques et les applique pour communiquer des résultats et permettre à d’autres de faire des prévisions. Ces résultats sont souvent exprimés sous forme de rapports ou de fractions.</td>
</tr>
<tr>
<td>Commis à la comptabilité</td>
<td>Il ou elle multiplie par des fractions afin d’effectuer des conversions entre des coûts hebdomadaires et des coûts quotidiens, et de calculer des paiements mensuels.</td>
</tr>
<tr>
<td>Cuisinier ou cuisinière</td>
<td>Il ou elle crée et prépare, en suivant une recette, des plats de toutes sortes et des repas complets. Les quantités dans les recettes sont parfois exprimées en mesures impériales qui comportent des fractions.</td>
</tr>
<tr>
<td>Conseiller ou conseillère en finances</td>
<td>Il ou elle traite les transactions financières des clients et fournit des renseignements au sujet des produits et des services financiers. Il ou elle utilise les taux de rendement ou de crédit comportant une fraction (p. ex., $\frac{3}{4}$ %).</td>
</tr>
<tr>
<td>Sociologue</td>
<td>Il ou elle étudie et explique les mécanismes qui régissent l’organisation et l’évolution de la société, dont les phénomènes et les comportements sociaux. Ce travail rigoureux et scientifique comprend la collecte d’informations à la suite d’enquêtes de terrain (observations, entretiens, questionnaires), l’étude de divers documents comme les archives ou les journaux et l’analyse des données (notamment des statistiques) à l’aide de divers outils scientifiques et théoriques. L’ensemble des données comporte souvent des quantités exprimées par des fractions.</td>
</tr>
<tr>
<td>Ouvrier ou ouvrière</td>
<td>Il ou elle exécute un travail manuel dans une usine, un atelier ou sur un chantier. Il ou elle utilise régulièrement des matériaux et des outils dont les mesures sont exprimées en mesures impériales qui comprennent une fraction (p. ex., $\frac{3}{4}$ de tonne de sable, une clé de $\frac{3}{8}$ po).</td>
</tr>
</tbody>
</table>
CHEMINEMENT DE L’ÉLÈVE

Les élèves poursuivent leur apprentissage en numération et sens du nombre en s’appuyant sur les connaissances acquises au cours des années précédentes et sur l’acquisition d’un nouveau vocabulaire et de nouvelles habiletés.

Le tableau 1 ci-après présente une synthèse du vocabulaire relatif aux fractions à l’étude au cycle primaire et une progression du vocabulaire à acquérir au cours de la 4e à la 6e année. L’acquisition du vocabulaire à une année d’études en particulier sous-entend son utilisation au cours des années suivantes.

Le tableau 2 ci-après présente une synthèse des habiletés relatives aux fractions à l’étude au cycle primaire et une progression des habiletés à développer au cours de la 4e à la 6e année. Il est important de reconnaître qu’il s’agit d’énoncés qui représentent l’habileté. Le programme-cadre présente des précisions reliées à ces habiletés.
Tableau de progression 1 - Vocabulaire

<table>
<thead>
<tr>
<th>Vocabulaire</th>
<th>Sens du nombre</th>
<th>Synthèse du cycle primaire</th>
<th>4e année</th>
<th>5e année</th>
<th>6e année</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>• Unité</td>
<td>• Numérateur</td>
<td>• Fraction propre</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Nombre</td>
<td>• Dénominateur</td>
<td>• Fraction impropre</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Chiffre</td>
<td>• Noms des dénominateurs(p. ex., cinquième, sixième, vingtième)</td>
<td>• Nombre fractionnaire</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Un tout</td>
<td>• Numérateur commun</td>
<td>• Fractions équivalentes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Parties équivalentes</td>
<td>• Dénominateur commun</td>
<td>• Fraction repère</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Fraction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Partie d’un tout</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Ensemble</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Élément d’un ensemble</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Partie d’un ensemble</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Demi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Tiers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Quart</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• La moitié de</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Le tiers de</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Le quart de</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Estimation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Arrondissement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Comparaison</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Plus que</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Moins que</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Plus grand que</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Plus petit que</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Supérieur à</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Inférieur à</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Égal à</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Égalité</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Équivalence</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Ordre croissant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Ordre décroissant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vocabulaire</td>
<td>Sens des opérations</td>
<td>• Opération</td>
<td>• Distribution (partage, groupement)</td>
<td>• Distributivité</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Addition (ajout, réunion)</td>
<td>• Diviseur</td>
<td>• Associativité</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Terme</td>
<td>• Dividende</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Somme</td>
<td>• Quotient</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Total</td>
<td>• Reste</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• En tout</td>
<td>• Opération inverse</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Soustraction (retrait, comparaison)</td>
<td>• Commutativité</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Différence</td>
<td>• Calcul mental</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Multiplication (ensemble de groupes égaux, comparaison)</td>
<td>• Estimation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Addition répétée</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Produit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Multiple</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note : Plusieurs termes de la synthèse du cycle primaire ont été assimilés dans un contexte de nombres naturels et seront utilisés au cycle moyen dans un contexte de fractions.
<table>
<thead>
<tr>
<th>Habiletés</th>
<th>Sens du nombre</th>
<th>Synthèse du cycle primaire</th>
<th>4e année</th>
<th>5e année</th>
<th>6e année</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Représenter les demis, les tiers et les quarts en tant que parties d’un tout et parties d’un ensemble.</td>
<td>Représenter des fractions simples en tant que parties d’un tout et parties d’un ensemble.</td>
<td>Distinguer les relations qui existent entre des nombres naturels, des fractions et des nombres décimaux.</td>
<td>Établir, analyser et expliquer les relations entre des nombres naturels, des fractions, des nombres décimaux, des pourcentages.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Comparer et ordonner des fractions ayant un dénominateur commun ainsi que des fractions ayant un même numérateur.</td>
<td>Comparer et ordonner des fractions propres et impropies.</td>
<td>Déterminer des fractions équivalentes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Explorer la relation entre les fractions et les nombres décimaux.</td>
<td>Lire et écrire en lettres et en chiffres des fractions impropies et des nombres fractionnaires.</td>
<td>Convertir en pourcentage une fraction dont le dénominateur est un diviseur de 100.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Additionner et soustraire des fractions ayant des dénominateurs communs.</td>
<td>Comparer deux fractions en utilisant une fraction repère telle que $\frac{1}{4}$, $\frac{1}{2}$, $\frac{3}{4}$ et 1.</td>
<td>Multiplier et diviser une fraction par un nombre naturel.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Expliquer les fractions équivalentes ainsi que l’équivalence entre une fraction impropre et un nombre fractionnaire.</td>
<td>Explorer les fractions équivalentes ainsi que l’équivalence entre une fraction impropre et un nombre fractionnaire.</td>
<td>Expliquer les stratégies utilisées ainsi que la démarche effectuée pour résoudre divers problèmes comportant des fractions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Établir et expliquer la relation entre un nombre décimal et une fraction dont le dénominateur est 10 ou 100, et vice versa.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SITUATIONS D’APPRENTISSAGE

Aperçu
Cette section présente, pour chacune des années d’études du cycle moyen, une situation d’apprentissage en lien avec les fractions et les grandes idées en numération et sens du nombre. Ce sont des situations de résolution de problèmes engageantes qui suscitent le questionnement et la réflexion. En outre, elles contribuent au développement de l’habileté à communiquer et à formuler un bon argument mathématique. Chacune des situations d’apprentissage est riche en contenu mathématique. Afin d’être en mesure d’anticiper les difficultés que pourraient éprouver les élèves et de planifier ses interventions, il est préférable de résoudre le problème avant de le présenter aux élèves.

Toutes les situations d’apprentissage présentées sont structurées en trois temps : avant l’apprentissage (mise en train), pendant l’apprentissage (exploration) et après l’apprentissage (objectivation/échange mathématique). Elles sont suivies de suggestions d’adaptations pour faciliter ou enrichir la tâche, d’une activité de suivi à la maison et de quelques activités supplémentaires que l’enseignant ou l’enseignante pourrait utiliser comme prolongement.

Dans la présentation des situations d’apprentissage, les icônes suivantes sont utilisées afin de faciliter le repérage de certains renseignements.

Légende

<table>
<thead>
<tr>
<th>Icônes d’ordre organisationnel</th>
<th>Icônes d’ordre pédagogique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Travail individuel</td>
<td>Observations possibles</td>
</tr>
<tr>
<td>Travail en équipe</td>
<td>Mise au point à l’intention de l’enseignant ou de l’enseignante</td>
</tr>
<tr>
<td>Travail en groupe classe</td>
<td>Pistes de questionnement</td>
</tr>
<tr>
<td>Durée approximative</td>
<td></td>
</tr>
</tbody>
</table>
Situation d’apprentissage, 4ᵉ année

Le dallage de la francophonie

GRANDE IDÉE : SENS DU NOMBRE

SOMMAIRE
Dans cette situation d’apprentissage (deux tâches), les élèves explorent le concept de fraction (partie d’un tout) pour comparer et ordonner des fractions ayant un numérateur ou un dénominateur commun (première tâche). Ils explorent ensuite le concept de fraction (partie d’un ensemble) pour déterminer le nombre de carrés nécessaires à la conception d’un dallage (seconde tâche).

INTENTION PÉDAGOGIQUE
Cette situation d’apprentissage a pour but d’amener les élèves :
• à identifier et à représenter des fractions (fraction d’un tout et fraction d’un ensemble);
• à comparer et à ordonner des fractions de même numérateur ou de même dénominateur;
• à approfondir leur compréhension du sens du numérateur et du dénominateur dans l’évaluation de la quantité représentée par une fraction;
• à développer des stratégies de résolution de problèmes.

Matiériel
• transparents des annexes 4.1, 4.2 et 4.3
• annexe 4.3 (1 copie par équipe)
• annexe 4.4 (2 copies par équipe)
• grandes feuilles de papier quadrillé ou ligné (1 feuille par équipe)
• marqueurs (1 par équipe)
• carrés de couleur ou utiliser l’annexe 4.6 pour en fabriquer (environ 20 verts, 20 blancs, 10 jaunes, 10 bleus et 5 rouges par équipe)
• bâtonnets de colle (1 par équipe)
• cartons pour coller le dallage (1 par équipe)
• ensembles de 36 compteurs (1 par équipe)
• feuilles de papier quadrillé
• deux dallages préparés à l’avance (voir p. 134)
ATTENTE ET CONTENUS D’APPRENTISSAGE

L’élève doit pouvoir identifier et représenter les nombres naturels jusqu’à 10 000, les fractions simples et les nombres décimaux jusqu’aux dixièmes dans divers contextes.

L’élève doit :

– comparer et ordonner des fractions ayant un même numérateur à l’aide de matériel concret ou illustré (p. ex., réglettes, bandes de carton, cercles de fractions, jetons);
– comparer et ordonner des fractions ayant un dénominateur commun à l’aide de matériel concret ou illustré;
– lire et écrire en lettres et en chiffres des fractions simples (p. ex., $\frac{2}{3}$, deux cinquièmes);
– utiliser une variété d’objets et d’illustrations pour représenter des fractions simples en tant que parties d’un tout et parties d’un ensemble dans divers contextes (p. ex., Six enfants s’amusent dans la cour d’école. Deux tiers jouent au ballon. Combien d’enfants jouent au ballon?).

Durée approximative de la situation d’apprentissage : 160 minutes

(2 tâches étalées sur une période de 2 jours)

CONTEXTE

Au cycle primaire, les élèves ont appris à considérer la fraction comme partie d’un tout et partie d’un ensemble d’éléments; ils ont exploré les demis et les quarts en 2e année et les tiers en 3e année. En 4e année, ils approfondissent leur compréhension du concept de fraction en travaillant avec des fractions simples et en comparant des fractions ayant un dénominateur ou un numérateur commun.
PRÉALABLES
La présente situation d’apprentissage permet aux élèves de réinvestir leur compréhension de la fraction en tant que partie d’un tout ou partie d’un ensemble dans un contexte de résolution de problèmes. Elle leur permet également d’avoir une perception plus juste et précise de la quantité représentée par une fraction, puis de développer des stratégies pour comparer des fractions de même numérateur ou de même dénominateur.

Pour être en mesure de réaliser cette situation d’apprentissage, les élèves doivent :
• connaître le sens du numérateur et du dénominateur;
• pouvoir interpréter des fractions simples en tant que parties d’un tout ou parties d’un ensemble.

L’annexe 4.7 (Activité préparatoire facultative : Fraction, partie et tout) propose une activité qui permet de développer davantage les connaissances et les habiletés nécessaires à la réalisation de la présente situation d’apprentissage.

VOCABULAIRE MATHÉMATIQUE
Dallage, tout, fraction, partie d’un tout, partie d’un ensemble, entier, ensemble, numérateur, dénominateur, demi, tiers, quart, cinquième…

TÂCHE 1 – AVANT L’APPRENTISSAGE (MISE EN TRAIN)
Projeter le transparent de l’annexe 4.1 (Dallages) et attirer l’attention des élèves sur les dallages A, B et C; leur demander d’expliquer ce qu’est un dallage. Préciser ensuite qu’un dallage n’est pas nécessairement composé de carrés, mais que ceux de la présente situation le sont. Présenter les dallages D, E et F; demander aux élèves d’identifier la couleur dominante dans chaque cas et de justifier leur réponse. Spécifier qu’on peut recourir à une fraction pour décrire une partie ombrée dans un dallage (p. ex., la moitié du dallage D est gris foncé, deux tiers du dallage E est gris, un quart du dallage F est gris foncé, un sixième du dallage F est gris pâle).

Projeter le transparent de l’annexe 4.2 (Fractions de dallage). Demander aux élèves de représenter la partie grise dans chaque dallage, à l’aide de fractions. Au besoin, leur donner une copie de l’annexe 4.2 ainsi que des carrés de couleur. Attirer l’attention des élèves sur la diversité de représentations d’une partie
grise dans un même dallage; toutefois, ne pas insister sur le fait qu’il s’agit de fractions équivalentes. Par exemple, pour le dallage B, on peut dire, si l’on considère le dallage comme un tout, que la partie grise correspond aux quatre douzièmes ($\frac{4}{12}$) ou au tiers ($\frac{1}{3}$) ou aux deux sixièmes ($\frac{2}{6}$) du dallage. On peut aussi dire, si l’on considère l’ensemble des carrés comme un tout, que quatre douzièmes ($\frac{4}{12}$) ou un tiers ($\frac{1}{3}$) ou deux sixièmes ($\frac{2}{6}$) des carrés sont gris.

![Diagrams of fractions and decimals](image)

Note : Lorsqu’on travaille avec des fractions, il est important de toujours énoncer le tout lié à la fraction. Par exemple, les élèves doivent dire qu’un tiers du dallage est gris ou encore qu’un tiers des carrés sont gris. Cette pratique permet d’établir le lien entre la fraction et son tout, le tout pouvant être un objet ou un ensemble d’objets.

Présenter aux élèves la situation d’apprentissage dans un contexte semblable à celui-ci. Par exemple, dire aux élèves :

> Je vous propose de créer une œuvre d’art qui fait appel à vos connaissances mathématiques et qui met en évidence votre fierté de faire partie de la grande communauté francophone de l’Ontario. Il s’agit de créer un dallage dans lequel les couleurs du drapeau franco-ontarien, le vert et le blanc, sont les couleurs dominantes.

Mentionner que le projet se fera en deux grandes étapes (les tâches 1 et 2). Projeter le transparent de l’annexe 4.3 (*Dallages de la francophonie*) pour présenter la première tâche. Indiquer aux élèves que vous avez préparé six répartitions de couleurs pour la création du dallage et que la première tâche consiste à déterminer lesquelles respectent le critère de prédominance du vert et du blanc. Spécifier que la création du dallage se fera dans la prochaine tâche.
S’assurer que les élèves ont bien compris la tâche en posant des questions telles que :

– « Qui peut expliquer la tâche? »

– « Qui peut expliquer ce que signifie ce critère : le vert et le blanc doivent être les couleurs dominantes? » *(La fraction verte et la fraction blanche du dallage doivent être respectivement plus grandes que chacune des fractions correspondant aux autres couleurs.)*

– « Que devez-vous faire avec les fractions qui figurent dans les colonnes? » *(Nous devons déterminer si la fraction verte et la fraction blanche sont plus grandes que les autres fractions.)*

TÂCHE 1 – PENDANT L’APPRENTISSAGE (EXPLORATION)

Grouper les élèves par deux et leur distribuer une copie de l’annexe 4.3 *(Dallages de la francophonie).* Mettre à leur disposition le matériel concret ou illustré qu’ils utilisent habituellement pour représenter des fractions (p. ex., cercles de fractions, réglettes, bandes de carton), des copies de l’annexe 4.4 *(Gabarit de tout)* et du papier brouillon. Allouer suffisamment de temps pour permettre aux élèves d’explorer diverses stratégies de résolution de problèmes et d’en discuter.

Pour résoudre le problème de cette première tâche, les élèves doivent recourir à leurs connaissances des fractions en tant que parties d’un tout. Ils peuvent appliquer des stratégies personnelles pour comparer des fractions en observant les numérateurs et les dénominateurs. Afin de déterminer si la répartition répond ou non au critère de prédominance du vert et du blanc, les élèves doivent parfois comparer toutes les fractions d’une répartition donnée. Dans d’autres cas, il leur suffira d’en comparer deux ou trois.

Note : Une fois la tâche complétée, les élèves devraient pouvoir conclure que :

- pour des fractions de *même dénominateur* (répartitions C et F), plus le numérateur est grand, plus la quantité représentée par la fraction est grande (p. ex., \(\frac{5}{12} > \frac{4}{12} > \frac{2}{12} > \frac{1}{12}\)).
4e année

• pour des fractions de **même numérateur** (répartitions A, B, D et E), plus le
dénominateur est grand, plus la quantité représentée par la fraction est petite
(p. ex., \(\frac{2}{18} < \frac{2}{9} < \frac{2}{6}\)). Pour plus de renseignements, voir *Relations d’ordre*, p. 44-49.

Observer les élèves et les amener à réfléchir au sens du numérateur et du déno-
minateur. Les observations et les interventions permettent de vérifier, dans un
contexte d’évaluation formative, les stratégies utilisées.

<table>
<thead>
<tr>
<th>Observations possibles</th>
<th>Interventions possibles</th>
</tr>
</thead>
</table>
| Une équipe ne sait par où commencer. | Demander aux élèves d’expliquer la tâche en leurs propres mots. Poser des questions telles que :
 – « Observez les fractions de la réparti-
tion A. Que devez-vous déterminer? »
 – « Quelle fraction est plus grande :
 \(\frac{1}{2}\) ou \(\frac{1}{3}\)? En êtes-vous certains?
 Comment pouvez-vous le démontrer? »
Puis leur dire de représenter les fractions et de les comparer. |
| Une équipe compare les fractions de tous
différents. Par exemple :
\(\frac{1}{6} > \frac{1}{9}\) | Dire aux élèves d’examiner les représen-
tations de un sixième et de un neuvième qu’ils viennent de dessiner. Poser des questions telles que :
 – « Pouvez-vous les comparer et affirmer qu’un sixième de ce tout est plus grand
 qu’un neuvième du même tout? »
 – « Les fractions que vous comparez
 représentent-elles une partie du
 même tout? »
Leur rappeler que la fraction est une
partie d’un tout. Dans le cas présent, le
tout est un rectangle. Il s’agit d’un même
tout séparé en sixièmes (pour \(\frac{1}{6}\)) et en
neuvièmes (pour \(\frac{1}{9}\)). |
Observations possibles | Interventions possibles
---|---
Une équipe semble cocher les répartitions au hasard. Afin de les amener à procéder de façon plus précise pour déterminer si une répartition répond au critère de prédominance du vert et du blanc, poser des questions telles que :
– « Vous dites que la répartition E ne répond pas au critère de prédominance du vert et du blanc. Qu’est-ce qui vous permet d’affirmer que \(\frac{2}{7} \) et \(\frac{2}{9} \) ne sont pas plus grands que \(\frac{2}{3} \) ? »

Une équipe construit un tout qui est séparé selon les fractions mentionnées et compare des fractions en se référant à ce tout, mais elle n’y parvient pas pour les autres fractions. Par exemple :
Répartition A

\[
\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
\frac{1}{6} ?
\end{array}
\]

Poser des questions telles que :
– « Pouvez-vous représenter \(\frac{1}{6} \) de ce tout sur le même tout ou sur un autre tout équivalent? »

Une équipe compare les fractions uniquement par la représentation visuelle; elle ne s’attarde pas au sens du numérateur ou du dénominateur. Par exemple :

Demander aux élèves d’examiner les chiffres des fractions de la répartition B et poser la question suivante :
– « Vous affirmez que des neuvièmes c’est plus petit que des sixièmes. Pourquoi? »
Les inviter ensuite à examiner la taille des parties et à observer le dénominateur, puis poser les questions suivantes :
– « Remarquez-vous quelque chose? »
(Plus le dénominateur est grand, plus les parties sont petites; plus le dénominateur est petit, plus les parties sont grandes.)
– « Ce constat est-il vrai pour toutes les fractions? »

Distribuer à chaque équipe une grande feuille de papier et un marqueur. Assigner deux répartitions à chaque équipe et les inviter à objectiver leur démarche en l’illustrant clairement en vue de l’échange mathématique. Préciser qu’ils doivent expliquer la stratégie qui leur a permis de comparer les fractions des différentes répartitions afin de déterminer lesquelles répondent au critère de prédominance du vert et du blanc.
Tâche 1 - Après l’apprentissage (objectivation/échange mathématique)

Projeter, pour consultation, le transparent de l’annexe 4.3 (Dallages de la francophonie). Inviter des équipes à venir, à tour de rôle, expliquer leur démarche afin de déterminer si les répartitions qui leur étaient assignées répondent ou ne répondent pas au critère de prédominance du vert et du blanc.

Encourager l’utilisation d’arguments clairs et précis ainsi que l’emploi d’un vocabulaire juste et de termes de causalité appropriés. Voici quelques exemples d’explications d’élèves :

- On a compris que $\frac{1}{4}$ est plus grand que $\frac{1}{12}$, car les douzièmes comptent plus de morceaux. Alors, les quarts sont de plus grands morceaux.

- Si le dénominateur (le nombre du bas) est petit, alors les morceaux sont grands. Par exemple, les tiers sont des morceaux plus grands que les neuvièmes.

- Puisque le dénominateur représente en combien de parties est séparé un tout, alors plus le dénominateur est grand, plus il y aura de parties et plus elles seront petites.

- Dans la répartition F, puisque les fractions sont des douzièmes, le tout est séparé en douze sections équivalentes. Alors, les morceaux ont tous la même taille. Donc $\frac{4}{12}$ c’est 4 morceaux, et c’est plus grand que $\frac{2}{12}$, qui n’est que 2 morceaux de cette même taille.

- La répartition B ne répond pas au critère puisque $\frac{1}{3}$ du dallage serait vert et $\frac{1}{3}$ du dallage serait bleu; il n’y aura donc pas plus de vert que de bleu.

Inviter les élèves à réagir et à poser des questions. Au besoin, poser des questions telles que :

- « Qui peut expliquer dans ses mots cette stratégie? »
- « Est-ce que d’autres élèves ont eu recours au même raisonnement? »
- « Est-ce que cette stratégie peut être appliquée à d’autres répartitions? »
- « De quelle façon ces deux stratégies sont-elles similaires ou différentes? »
– « D’après ce qu’on vient de présenter, comment peut-on s’y prendre pour comparer des fractions ayant le même dénominateur? le même numérateur? Est-ce toujours vrai? »

– « Quelle fraction est la plus grande, $\frac{5}{6}$ ou $\frac{7}{8}$? En quoi ce qu’on vient de voir peut-il nous aider à comparer ces fractions? » (Il s’agit de les comparer en considérant la différence avec le tout. Il manque $\frac{1}{6}$ à $\frac{5}{6}$ pour représenter le tout, alors qu’il manque $\frac{1}{8}$ à $\frac{7}{8}$. Puisque des huitièmes sont de plus petites parties que des sixièmes, alors $\frac{7}{8}$ est plus près d’un tout que $\frac{5}{6}$. Donc $\frac{7}{8} > \frac{5}{6}$.)

– « J’ai écrit deux fractions au tableau (p. ex., $\frac{3}{4}$ et $\frac{3}{8}$). Laquelle est la plus grande? Pourquoi? »

– « Quelles répartitions permettent de respecter le critère de prédominance du vert et du blanc? » (Les répartitions A, D et F.)

– « Avez-vous dessiné toutes les fractions ou effectué de nombreux calculs pour comparer les fractions et déterminer les répartitions qui répondraient au critère de prédominance du vert et du blanc? » (En posant cette question, on souligne l’importance de prendre le temps d’examiner la situation, les fractions et les nombres dans les fractions avant d’effectuer des calculs afin de mieux comprendre le problème et de choisir une stratégie efficace.)

Tâche 2 - AVANT L’APPRENTISSAGE (MISE EN TRAIN)

Projeter les illustrations G et H de l’annexe 4.2 (*Fractions de dallage*). Rappeler aux élèves, en présentant les carrés qui seront utilisés pour former un dallage, qu’une fraction peut exprimer une partie d’un ensemble (p. ex., $\frac{1}{4}$ des pièces de l’ensemble G sont grises; $\frac{1}{5}$ des pièces de l’ensemble H sont noires). Expliquer que dans la tâche 2, ils devront examiner la fraction en tant que partie d’un ensemble.
Présenter aux élèves la suite de la situation d’apprentissage :

Lors de la première tâche, vous avez déterminé que les répartitions A, D et F (annexe 4.3) permettraient de créer un dallage dont les couleurs dominantes seraient le vert et le blanc. Vous devez maintenant créer un dallage formé de 36 carrés en fonction d’une de ces trois répartitions. S’il s’agit de la répartition A, par exemple, en considérant l’ensemble des 36 carrés, nous pouvons déterminer que le quart ($\frac{1}{4}$) de l’ensemble des carrés sera vert, la moitié ($\frac{1}{2}$) sera blanc, le sixième ($\frac{1}{6}$) sera jaune et le douzième ($\frac{1}{12}$) sera bleu. Vous devez donc d’abord déterminer le nombre de carrés de chaque couleur dont vous aurez besoin. Procurez-vous ensuite les carrés nécessaires et assemblez-les afin de créer votre dallage.

S’assurer que les élèves ont bien compris la tâche en posant des questions telles que :

– « Qui peut expliquer dans ses mots la tâche à effectuer? »

– « Comment pouvez-vous déterminer le nombre de carrés de chaque couleur dont vous aurez besoin? »

S’assurer que les trois répartitions seront exploitées. Préciser aux élèves qu’ils devront justifier la composition de leur dallage et en discuter lors de l’échange mathématique.

TÂCHE 2 – PENDANT L’APPRENTISSAGE (EXPLORATION)

Grouper les élèves par deux. Mettre à leur disposition le matériel nécessaire, soit des ensembles de 36 compteurs ou jetons, du papier quadrillé, des carrés de couleur et un carton. Allouer suffisamment de temps pour permettre aux élèves d’effectuer la tâche demandée.
Pour résoudre le problème de cette seconde tâche, les élèves doivent réinvestir leurs connaissances des fractions en tant que parties d’un ensemble. Préciser qu’une fois le nombre de carrés de chaque couleur déterminé, ils doivent organiser les carrés de façon à créer leur propre dallage; ensuite, ils doivent le coller sur un carton en s’assurant de juxtaposer les carrés, sans laisser d’espace entre eux, conformément à la définition d’un dallage. Expliquer que, si on laisse des espaces entre les carrés ce n’est plus un dallage et que, même si on peut affirmer par exemple que la moitié des carrés sont blancs, il serait faux d’affirmer que la moitié du dallage est blanc. Finalement, demander aux élèves de découper le contour de leur dallage et d’évaluer alors si la répartition des couleurs en fonction de la surface totale est respectée (voir l’annexe 4.5 pour des éléments de solution).

Observer les élèves afin de choisir, de façon stratégique et en fonction de l’intention pédagogique, les équipes qui présenteront lors de l’échange mathématique, les stratégies utilisées pour déterminer le nombre de carrés de chaque couleur.
Observations possibles
| **Interventions possibles** |
|-----------------------------|-----------------------------|
| Une équipe a de la difficulté à représenter la fraction d’un ensemble. | Poser des questions telles que :
- « Quel est votre tout? » (L’ensemble des 36 carrés.)
- « Avec quel matériel pouvez-vous représenter votre tout? » (On peut le représenter à l’aide de 36 jetons ou d’un rectangle de 36 unités carrées.)
Note : Leur préciser de ne pas oublier que la fraction est toujours une fraction de l’ensemble, donc de 36 jetons ou de 36 unités carrées.
- « Dans $\frac{1}{4}$, quel sens a quart ou le dénominateur 4? » (Le diviseur ou le nombre de groupes.)
- « Et que représente le numérateur 1? » (Le nombre de groupes considérés.) |
| Une équipe identifie les fractions en oubliant qu’il s’agit de fractions du même tout. Par exemple, pour la répartition D, elle détermine que $\frac{2}{4}$ (ou $\frac{1}{2}$) de l’ensemble de 36 carrés correspond à 18 carrés ($\frac{1}{2}$ de 36), mais poursuit en avançant que $\frac{2}{18}$ correspond à 2 carrés ($\frac{2}{18}$ du reste des carrés, soit $\frac{2}{18}$ de 18 carrés correspond à 2 carrés). | Poser des questions telles que :
- « Quelle fraction des carrés seront rouges? » ($\frac{2}{18}$)
- « Mais $\frac{2}{18}$ de quel tout? » ($\frac{2}{18}$ de l’ensemble des 36 carrés et non $\frac{2}{18}$ des 18 carrés restants.)
S’assurer que les élèves identifient les fractions en relation avec le tout, soit l’ensemble de 36 carrés. |
| Une équipe détermine pour la répartition F que $\frac{1}{12}$ des 36 carrés correspond à 33 carrés. (De fait, l’équipe a retiré les 3 carrés correspondant à $\frac{1}{12}$ des carrés et a considéré les 33 carrés restants.) | Poser des questions telles que :
- « Vous avez 33 carrés rouges. Combien de carrés y aura-t-il alors dans votre dallage? »
- « Examinez attentivement votre représentation de $\frac{1}{12}$. Est-ce beaucoup par rapport au tout? » |
| En disposant ses carrés, une équipe cherche à créer une forme rectangulaire sans faire le lien avec le concept d’aire et les faits de multiplication. Une autre équipe essaie de créer un rectangle d’une longueur de 5 unités. | Poser des questions telles que :
- « Pouvez-vous déplacer les carrés? La longueur peut-elle être de 5 unités? »
- « Est-ce possible de créer un dallage carré? »
- « Quelles peuvent être les dimensions d’un rectangle de 36 unités carrées? » |

Distribuer à chaque équipe une grande feuille de papier quadrillé et un marqueur. Demander aux élèves d’indiquer la répartition choisie et de laisser des traces de leur démarche afin de la présenter et de l’expliquer lors de l’échange mathématique.
Allouer suffisamment de temps aux élèves pour préparer l’échange mathématique. Préciser qu’ils doivent expliquer les stratégies qui leur ont permis de déterminer le nombre de carrés de chaque couleur.

TÂCHE 2 - APRÈS L’APPRENTISSAGE (OBJECTIVATION/ÉCHANGE MATHÉMATIQUE)

Mentionner que tous les dallages seront affichés pour fins de comparaison. Cependant puisque le but de l’échange mathématique est d’abord d’apporter des idées nouvelles à la discussion, seules quelques équipes présenteront leurs stratégies.

Demander à quelques équipes de présenter leur démarche selon un ordre logique (selon la répartition, la stratégie utilisée, etc.). Encourager les élèves à avancer des arguments précis et clairs et à utiliser un vocabulaire juste et des termes de causalité. Voici quelques exemples d’explication d’élèves :

- On a dessiné un carré de 36 unités carrées sur du papier quadrillé, ensuite on l’a séparé en deux pour obtenir des moitiés. Puis, on a compté 18 carrés dans une moitié. Ainsi, si la moitié du dallage correspond à 18 carrés, alors le quart, qui est la moitié de la moitié, correspond à 9 carrés. (Répartition A)

environ 30 minutes
4ᵉ année

- On a remarqué que pour obtenir des douzièmes, on a fait 12 groupes de trois. On pouvait le représenter par $12 \times 3 = 36$ ou $36 \div 12 = 3$, car 36 divisé par 12 correspond à 3 ou 3 fois 12 correspond à 36. (Répartition F)

- Puisqu’on a déjà déterminé le nombre de carrés verts, blancs et jaunes, alors les trois carrés restants correspondent à la partie qui reste, soit $\frac{1}{12}$ des carrés. (Répartition A)

- Nous avons dessiné des douzièmes sur une feuille en séparant le rectangle en 12 parties. Nous avons ensuite réparti les 36 cubes dans chacun des douzièmes (3 par case). Alors, on a constaté que $\frac{2}{12}$ des 36 cubes correspondent à 6 cubes, soit 6 carrés bleus. (Répartition F)

- Dans notre dallage jaune, vert, blanc et rouge, $\frac{18}{36}$ des carrés sont verts, ce qui équivaut à la moitié, $\frac{2}{12}$ sont jaunes ce équivaut à $\frac{1}{6}$, car une des six rangées est jaune… Il s’agit bien d’un dallage, car tous les carrés se touchent sans qu’on ait laissé d’espace entre eux. (Répartition D)
• Comme le dénominateur était 4, alors avec 36 cubes, on a fait 4 paquets. Chaque cube représente un carré. Ensuite, selon le numérateur, on a pris le nombre de paquets approprié; pour la fraction \(\frac{2}{4} \), il s’agit de 2 paquets de 9 cubes, soit 18 carrés verts. Nous avons fait la même chose pour les autres fractions. (Répartition D)

Note : Faire remarquer que le dénominateur indique en combien de parties ou de groupes le tout doit être séparé, que c’est en fait un diviseur, et que le numérateur détermine le nombre de parties à considérer, qu’il s’agit en fait de l’élément multiplicateur.

Inviter les élèves à réagir et à poser des questions. Les inciter à réfléchir en posant, au besoin, des questions telles que :

– « Qui peut expliquer dans ses mots la stratégie qui vient d’être présentée? »
– « Est-ce que d’autres élèves ont utilisé cette stratégie ou une stratégie similaire? »
– « Est-ce que cette stratégie peut s’appliquer à d’autres répartitions? »

Afficher les dallages en les regroupant selon leur répartition. Les examiner ensuite avec les élèves afin de faire ressortir que l’équivalence des parties et desGlobals est reliée à l’équivalence de superficie et non à la congruence (les dallages C et D de l’annexe 4.2 illustrent ce concept). Voici un exemple d’une intervention possible :

– « Deux équipes ont choisi la même répartition, mais on constate que les deux dallages sont différents. Est-ce que chaque dallage respecte la répartition des couleurs? Pouvez-vous le justifier? » (Les touts ont la même aire et contiennent le même nombre de carrés de chaque couleur. Seul l’arrangement des carrés diffère. La fraction de chaque couleur est la même dans les deux situations, même si les carrés ne sont pas au même endroit.)
Présenter deux dallages (un de 24 carrés de la même grandeur que ceux de l’activité et un de 36 carrés plus petits que ceux de l’activité) que vous aurez préalablement préparés suivant la répartition A. Les examiner avec les élèves afin de faire ressortir qu’une fraction est une relation entre un tout et ses parties (les dallages E et F de l’annexe 4.2 illustrent ce concept). Voici des exemples d’interventions possibles :

– « Voici un dallage de 24 carrés que j’ai préparé en utilisant la répartition A. Il y a moins de carrés blancs que dans les dallages des élèves qui se sont aussi servis de cette répartition. Est-ce que mon dallage respecte la répartition A? Est-ce qu’il comprend une plus grande partie en blanc? Comment mon dallage et ceux des autres qui ont utilisé la répartition A peuvent-ils correspondre aux mêmes fractions? » (Les relations entre le tout et les parties sont les mêmes, peu importe le nombre d’éléments contenus dans l’ensemble.)

– « Voici un dallage de 36 carrés. Est-ce qu’il respecte la répartition A? Comment peut-il représenter les mêmes fractions que ce dallage (dallage d’une équipe ayant utilisé la répartition A) qui est plus gros? » (Les relations entre le tout et les parties sont les mêmes, peu importe la grandeur des parties.)

ADAPTATIONS

L’activité peut être modifiée pour répondre aux différents besoins des élèves.

<table>
<thead>
<tr>
<th>Pour faciliter la tâche</th>
<th>Pour enrichir la tâche</th>
</tr>
</thead>
<tbody>
<tr>
<td>• proposer aux élèves des outils qui représentent diverses fractions (p. ex., des ensembles de fractions);</td>
<td>• demander aux élèves de créer un dallage de plus de 36 carrés tout en respectant la répartition des couleurs;</td>
</tr>
<tr>
<td>• à la tâche 2, leur demander de créer un dallage de la répartition A en utilisant 12 ou 24 carrés au lieu de 36.</td>
<td>• leur demander de trouver une nouvelle répartition de couleurs, exprimée en fractions, et qui répond au critère de prédominance du vert et du blanc.</td>
</tr>
</tbody>
</table>

SUIVI À LA MAISON

À la maison, les élèves peuvent illustrer des situations où ils recourent à des fractions pour déterminer ou estimer la part d’une couleur sur des objets qui les entourent (p. ex., le quart des murs de ma chambre sont verts, près du tiers des carreaux de céramique dans la douche présentent un dessin).
Activité supplémentaire - 1

Les drapeaux

Proposer aux élèves de créer un drapeau de classe sur lequel figureront quatre éléments d’égale importance; ainsi, il sera séparé en quatre sections équivalentes.

Distribuer aux élèves une feuille présentant des rectangles congruents (p. ex., annexe 4.4). Leur demander d’abord de fractionner les rectangles en quarts de diverses façons. Ensuite, inviter des élèves à en reproduire un au tableau. Discuter des divers fractionnements possibles. Généralement, le tout est fractionné en deux parties et chacune de ces parties est par la suite fractionnée en deux. Chaque partie est donc une demi-partie d’une demi-partie, ce qui représente le quart du tout. Faire remarquer aux élèves que, bien que la forme des parties diffère, chaque partie couvre la même surface, soit un quart du rectangle; elles sont donc toutes équivalentes.

Inviter les élèves à choisir un fractionnement et à créer un drapeau en respectant le critère de quatre éléments d’importance égale.

Activité supplémentaire - 2

Une fraction s’approchant de…

Demander aux élèves de nommer une fraction s’approchant d’un entier. Leur demander ensuite d’en trouver une qui s’approcherait encore davantage de cet entier et d’expliquer les raisons de leur choix. Continuer la même démarche avec d’autres repères (p. ex., près de $\frac{1}{2}$, près de 0). Leur permettre d’utiliser divers outils (p. ex., matériel concret, droite numérique, réglettes, ensemble de fractions) pour trouver les fractions et les inciter progressivement à justifier leurs réponses à l’aide d’arguments mathématiques justes, clairs et convaincants.
ACTIVITÉ SUPPLÉMENTAIRE - 3

Captons des images de fractions

Donner aux élèves divers énoncés de situations où des fractions sont utilisées et leur demander de les représenter.

Exemples

- J’avais traversé les trois quarts \(\left(\frac{3}{4} \right) \) du lac à la nage avant de me sentir fatigué.
- J’ai bu le tiers \(\left(\frac{1}{3} \right) \) de mon verre de lait.

Voici quelques exemples d’énoncés possibles :

- J’ai traversé les trois cinquièmes \(\left(\frac{3}{5} \right) \) du terrain de soccer.
- Les neuf dixièmes \(\left(\frac{9}{10} \right) \) des billes dans mon sac sont blanches.
- Deux tiers \(\left(\frac{2}{3} \right) \) de la douzaine de beignes sont au chocolat.
- L’enfant n’a même pas mangé le tiers \(\left(\frac{1}{3} \right) \) de son assietée.
- Mon frère mesure deux tiers \(\left(\frac{2}{3} \right) \) de ma taille.
- J’ai grimpé les cinq huitièmes \(\left(\frac{5}{8} \right) \) de l’échelle.
- J’étais aux deux tiers \(\left(\frac{2}{3} \right) \) de la piste de course lorsqu’il m’a dépassé.
- Près du tiers \(\left(\frac{1}{3} \right) \) des élèves de la classe portent des lunettes.
- J’ai aperçu l’écureuil lorsqu’il avait grimpé les trois quarts \(\left(\frac{3}{4} \right) \) du mât du drapeau.
- La salle de spectacle était à peine remplie au cinquième \(\left(\frac{1}{5} \right) \).
- Il reste un quart \(\left(\frac{1}{4} \right) \) de lait dans le verre.
ANNEXE 4.1

Dallages

\(\frac{1}{2}\) du dallage D est gris foncé

\(\frac{2}{3}\) du dallage E est gris

\(\frac{1}{4}\) du dallage F est gris foncé

\(\frac{1}{6}\) du dallage F est gris pâle
ANNEXE 4.2

Fractions de dallage

I. Observez la partie grise du dallage. Si possible, représentez cette partie à l’aide de deux fractions différentes.

II. Les carrés suivants seront utilisés pour créer un dallage. Indiquez quelle fraction de ces carrés sont gris.
Dallages de la francophonie

Créez un dallage à l’aide de carrés congruents de différentes couleurs, juxtaposés les uns aux autres, sans superposition et sans espace. Les deux couleurs dominantes doivent être le vert et le blanc. Le tableau ci-dessous présente des répartitions possibles de couleurs.

Tâche 1
Identifiez parmi les répartitions suivantes celles qui respectent le critère de prédominance du vert et du blanc.

Répartitions possibles des couleurs

<table>
<thead>
<tr>
<th>COULEUR</th>
<th>Fraction du dallage ou fraction des carrés de chaque couleur</th>
</tr>
</thead>
<tbody>
<tr>
<td>vert</td>
<td>1/4 1/3 1/8 2/4 2/18 4/12</td>
</tr>
<tr>
<td>blanc</td>
<td>1/2 1/9 3/8 2/9 2/9 5/12</td>
</tr>
<tr>
<td>rouge</td>
<td>— 1/6 2/8 2/18 2/6 1/12</td>
</tr>
<tr>
<td>jaune</td>
<td>1/6 1/18 2/8 2/12 — —</td>
</tr>
<tr>
<td>bleu</td>
<td>1/12 1/3 — — 2/6 2/12</td>
</tr>
</tbody>
</table>

La répartition respecte (O) ou ne respecte pas (N) le critère
4e année

ANNEXE 4.4

Gabarit de tout

Répartition _____

Répartition _____

Répartition _____

Guide d’enseignement efficace des mathématiques, de la 4e à la 6e année
Numération et sens du nombre - Fascicule 2
ANNEXE 4.5

Nombre de carrés de chaque couleur dans les dallages

<table>
<thead>
<tr>
<th>COULEUR</th>
<th>RÉPARTITION A</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fraction du dallage ou fraction des carrés de chaque couleur</td>
<td>Nombre de carrés de chaque couleur dans le dallage de 36 carrés</td>
</tr>
<tr>
<td>vert</td>
<td>$\frac{1}{4}$</td>
<td>9</td>
</tr>
<tr>
<td>blanc</td>
<td>$\frac{1}{2}$</td>
<td>18</td>
</tr>
<tr>
<td>rouge</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>jaune</td>
<td>$\frac{1}{6}$</td>
<td>6</td>
</tr>
<tr>
<td>bleu</td>
<td>$\frac{1}{12}$</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COULEUR</th>
<th>RÉPARTITION D</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fraction du dallage ou fraction des carrés de chaque couleur</td>
<td>Nombre de carrés de chaque couleur dans le dallage de 36 carrés</td>
</tr>
<tr>
<td>vert</td>
<td>$\frac{2}{4}$</td>
<td>18</td>
</tr>
<tr>
<td>blanc</td>
<td>$\frac{2}{9}$</td>
<td>8</td>
</tr>
<tr>
<td>rouge</td>
<td>$\frac{2}{18}$</td>
<td>4</td>
</tr>
<tr>
<td>jaune</td>
<td>$\frac{2}{12}$</td>
<td>6</td>
</tr>
<tr>
<td>bleu</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COULEUR</th>
<th>RÉPARTITION F</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fraction du dallage ou fraction des carrés de chaque couleur</td>
<td>Nombre de carrés de chaque couleur dans le dallage de 36 carrés</td>
</tr>
<tr>
<td>vert</td>
<td>$\frac{4}{12}$</td>
<td>12</td>
</tr>
<tr>
<td>blanc</td>
<td>$\frac{5}{12}$</td>
<td>15</td>
</tr>
<tr>
<td>rouge</td>
<td>$\frac{1}{12}$</td>
<td>3</td>
</tr>
<tr>
<td>jaune</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>bleu</td>
<td>$\frac{2}{12}$</td>
<td>6</td>
</tr>
</tbody>
</table>
ANNEXE 4.6

Modèle pour fabriquer les carrés de couleur

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ANNEXE 4.7

Activité préparatoire facultative : Fraction, partie et tout

Cette activité permet d’explorer la fraction en tant que partie d’un tout ou partie d’un ensemble et de reconnaître les éléments importants qui y sont rattachés, soit l’importance de l’unité, le lien entre la fraction et le tout, le rôle de multiplicateur du numérateur et le rôle de diviseur du dénominateur.

Présenter une situation qui comporte deux éléments sur trois reliés à la fraction (tout et partie, tout et fraction ou partie et fraction). Demander aux élèves de déterminer l’élément manquant.

Exemple

Si la réglette bleue est le tout, quelle fraction la réglette vert foncé représente-t-elle?

<table>
<thead>
<tr>
<th>Le tout</th>
<th>La partie</th>
<th>La fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Réglette bleue</td>
<td>Réglette vert foncé</td>
<td>?</td>
</tr>
</tbody>
</table>

Raisonnement

<table>
<thead>
<tr>
<th>Raisonement</th>
<th>Le tout</th>
<th>La partie</th>
<th>La fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Réglette bleue</td>
<td>Réglette vert foncé</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>Réglette vert pâle</td>
<td>Réglette vert foncé</td>
<td>?</td>
<td></td>
</tr>
</tbody>
</table>

Énoncé

La réglette vert foncé représente $\frac{2}{3}$ de la réglette bleue.

Poursuivre l’activité à l’aide d’autres situations en variant le modèle utilisé — soit le modèle de surface (p. ex., l’unité est une forme géométrique), le modèle de longueur (p. ex., l’unité est une réglette ou un segment de droite) ou le modèle d’ensemble (p. ex., l’unité est un ensemble d’objets) — ainsi que l’élément recherché (la fraction, la partie ou le tout).

Le tableau ci-après présente des exemples de situations qui font référence aux trois modèles et aux trois éléments recherchés.

Note : Pour une même situation, il est possible que plusieurs énoncés soient acceptables. Sur fond mauve pâle se trouve un raisonnement qui permettrait d’identifier l’élément manquant.
ANNEXE 4.7 (suite)

<table>
<thead>
<tr>
<th>Élément à identifier</th>
<th>Le tout</th>
<th>La partie</th>
<th>La fraction</th>
<th>Exemple d’énoncé complété</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA FRACTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>un triangle</td>
<td>un trapèze</td>
<td>?</td>
<td></td>
<td>Ce trapèze correspond aux $\frac{3}{4}$ du triangle.</td>
</tr>
<tr>
<td>un ensemble de jetons</td>
<td>3 jetons</td>
<td>?</td>
<td></td>
<td>3 jetons représentent $\frac{3}{4}$ d’un ensemble de 12 jetons.</td>
</tr>
<tr>
<td>réglette orange</td>
<td>réglette mauve</td>
<td>?</td>
<td></td>
<td>La réglette mauve correspond aux $\frac{2}{3}$ (ou $\frac{6}{10}$) de la réglette orange.</td>
</tr>
<tr>
<td>réglette orange</td>
<td>réglettes rouges</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>réglette mauve</td>
<td>réglette orange</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LA PARTIE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>un rectangle</td>
<td>?</td>
<td>$\frac{4}{5}$</td>
<td></td>
<td>$\frac{4}{5}$ du rectangle est jaune.</td>
</tr>
<tr>
<td>réglette brune</td>
<td>?</td>
<td>$\frac{1}{4}$</td>
<td></td>
<td>La réglette rouge () correspond à $\frac{1}{4}$ de la réglette brune ().</td>
</tr>
<tr>
<td>un ensemble de 24 objets</td>
<td>?</td>
<td>$\frac{5}{6}$</td>
<td></td>
<td>20 objets correspondent aux $\frac{5}{6}$ de l'ensemble de 24 objets.</td>
</tr>
</tbody>
</table>

Prendre 24 jetons et les séparer en 6 groupes (les sixièmes de l’ensemble), puis identifier 5 des 6 groupes.
ANNEXE 4.7 (suite)

<table>
<thead>
<tr>
<th>Élément à identifier</th>
<th>Le tout</th>
<th>La partie</th>
<th>La fraction</th>
<th>Exemple d’énoncé complété</th>
</tr>
</thead>
<tbody>
<tr>
<td>LE TOUT</td>
<td></td>
<td>réglette vert foncé</td>
<td>$\frac{2}{3}$</td>
<td>La réglette vert foncé ([\boxed{\square}]) correspond aux $\frac{2}{3}$ de la réglette bleue ([\boxed{\square}]).</td>
</tr>
<tr>
<td>?</td>
<td>?</td>
<td>?</td>
<td>$\frac{2}{3}$</td>
<td>?</td>
</tr>
<tr>
<td>?</td>
<td>6 objets</td>
<td>?</td>
<td>$\frac{2}{3}$</td>
<td>6 objets représentent $\frac{2}{3}$ d’un ensemble de 9 objets.</td>
</tr>
<tr>
<td>?</td>
<td>un rectangle</td>
<td>?</td>
<td>$\frac{3}{4}$</td>
<td>Le rectangle donné correspond aux $\frac{3}{4}$ du rectangle ci-dessous.</td>
</tr>
</tbody>
</table>

Prendre la partie et la séparer en trois sections, puis ajouter une section équivalente à une des trois (afin d’obtenir quatre sections équivalentes, soit quatre quarts ou une unité).

$\frac{3}{4}$ \[\boxed{\square}\] \[\boxed{\square}\] \[\boxed{\square}\] $\frac{4}{4}$ \[\boxed{\square}\] \[\boxed{\square}\] \[\boxed{\square}\]
Situations d’apprentissage, 5e année

Le pique-nique des fractions

GRANDE IDÉE : SENS DU NOMBRE

SOMMAIRE

Dans cette situation d’apprentissage, les élèves utilisent des nombres fractionnaires et des fractions impropre pour comparer des quantités de sandwiches.

INTENTION PÉDAGOGIQUE

Cette situation d’apprentissage a pour but d’amener les élèves :

- à développer le sens de la quantité représentée à l’aide de fractions impropres et de nombres fractionnaires;
- à reconnaître le lien entre diverses représentations équivalentes d’une même quantité (fraction impropre, nombre fractionnaire, fractions équivalentes, représentation symbolique, représentation semi-concrète, fraction en tant que division et fraction en tant que partie d’un tout);
- à développer des stratégies de résolution de problèmes.

Matériel

- transparent de l’annexe 5.1A
- annexes 5.1A et 5.1B (1 copie par équipe)
- marqueurs
- grandes feuilles de papier (1 par équipe)
- rétroprojecteur
ATTENTES ET CONTENUS D’APPRENTISSAGE

Attentes
L’élève doit pouvoir :
• distinguer les relations qui existent entre des nombres naturels, des fractions et des nombres décimaux dans divers contextes ;
• identifier et représenter les nombres naturels jusqu’à 100 000, les fractions impropres et les nombres décimaux jusqu’aux centièmes dans divers contextes.

Contenus d’apprentissage
L’élève doit :
– explorer les fractions équivalentes à l’aide de matériel concret (p. ex., réglettes);
– explorer l’équivalence entre une fraction impropre et un nombre fractionnaire à l’aide de matériel concret ou illustré (p. ex., \(\frac{6}{3} = 2 \frac{2}{3} \));
– comparer et ordonner des fractions propres et impropres et des nombres décimaux jusqu’aux centièmes (p. ex., sur une droite numérique);
– lire et écrire en lettres et en chiffres des fractions impropies et des nombres fractionnaires;
– utiliser une variété d’objets et d’illustrations pour représenter des fractions impropies et des nombres fractionnaires (p. ex., papier pliage, géoplan, mosaïque géométrique).

Durée approximative de la situation d’apprentissage : 100 minutes

CONTEXTE
Au cours des années précédentes, les élèves ont acquis une compréhension du concept de fraction par l’exploration de fractions qui représentent une quantité inférieure à un tout, c’est-à-dire les fractions propres (p. ex., \(\frac{5}{8} \)). En 5e année, ils approfondissent leur compréhension de ce concept en explorant les fractions qui représentent une quantité supérieure à l’entier, soit les fractions impropres (p. ex., \(\frac{5}{3} \)) ou les nombres fractionnaires (p. ex., \(1 \frac{1}{2} \)). Ils étudient également le concept de fractions équivalentes.

PRÉALABLES
La présente situation d’apprentissage permet, dans un contexte de résolution de problèmes, de développer le sens de la quantité représentée par un nombre fractionnaire et par une fraction impropre. Elle favorise aussi la création de liens...
entre les fractions propres, les fractions improprees, les nombres fractionnaires et les nombres naturels ainsi qu’entre leurs représentations (symbolique, semi-concrète, concrète).

Pour être en mesure de réaliser cette situation d’apprentissage, les élèves doivent :

• pouvoir représenter et reconnaître des fractions simples;
• reconnaître que la fraction peut être utilisée pour représenter une partie d’un tout et une division;
• reconnaître qu’une quantité peut être représentée par des fractions équivalentes.

VOCABULAIRE MATHÉMATIQUE

Fraction, numérateur, dénominateur, partie d’un tout, division, fraction propre, fraction impropre, nombre fractionnaire, entier, fractions équivalentes.

AVANT L’APPRENTISSAGE (MISE EN TRAIN)

Cette mise en train a pour but de permettre aux élèves de reconnaître la représentation d’une quantité à l’aide d’un nombre fractionnaire et d’une fraction impropre.

Présenter la situation suivante, en complétant un tableau comme celui ci-après :

Lors d’un pique-nique de classe, il y avait au menu des petites pizzas coupées en quatre morceaux égaux. Un élève a mangé un morceau de pizza. Quelle quantité de pizza a-t-il mangée? (\(\frac{1}{4}\) de pizza)

Il a ensuite mangé un deuxième morceau. Quelle quantité de pizza a-t-il mangée en tout? (2 fois \(\frac{1}{4}\) de pizza ou \(\frac{2}{4}\) de pizza; les élèves mentionneront probablement \(\frac{1}{2}\))

Puis, il en a mangé un troisième. Quelle quantité de pizza a-t-il mangée en tout? (3 fois \(\frac{1}{4}\) de pizza ou \(\frac{3}{4}\) de pizza)

Puis, un quatrième. Quelle quantité de pizza a-t-il mangée en tout? (4 fois \(\frac{1}{4}\) de pizza, \(\frac{4}{4}\) de pizza ou 1 pizza)

Et finalement, un cinquième. Quelle quantité de pizza a-t-il mangée en tout? (5 fois \(\frac{1}{4}\) de pizza, \(\frac{5}{4}\) de pizza ou \(\frac{1}{4}\) de pizza)
Guide d'enseignement efficace des mathématiques, de la 4e à la 6e année

1 morceau	$\frac{1}{4}$ de pizza	un quart	fractions propres
2 morceaux	$\frac{2}{4}$ de pizza	deux quarts	
3 morceaux	$\frac{3}{4}$ de pizza	trois quarts	
4 morceaux	$\frac{4}{4}$ de pizza	quatre quarts	fraction-unité
1 pizza		un	nombre entier
5 morceaux	$\frac{5}{4}$ de pizza	cinq quarts	fraction impropre
$1\frac{1}{4}$ pizza		un et un quart	nombre fractionnaire

Faire remarquer que dans les fractions $\frac{1}{4}$, $\frac{2}{4}$ et $\frac{3}{4}$, le numérateur est inférieur au dénominateur et souligner que ces fractions sont appelées des **fractions propres**. Noter qu’il n’est pas essentiel que le numérateur d’une fraction soit inférieur au dénominateur. Mentionner qu’une fraction dont le numérateur est supérieur au dénominateur est une **fraction impropre** et qu’elle représente alors une quantité supérieure à un tout. Par exemple, dans la présente situation lorsque l’élève a mangé 5 morceaux de pizza en tout, on a écrit $\frac{5}{4}$ de pizza. La fraction $\frac{5}{4}$ se lit « cinq quarts » et signifie $\frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} = 5 \times \frac{1}{4} = \frac{5}{4}$. De la même façon que $\frac{2}{4}$ signifie deux morceaux de touts séparés en quarts, $\frac{5}{4}$ signifie cinq morceaux de touts séparés en quarts.

Note : Lorsque le numérateur d’une fraction est égal à son dénominateur (p. ex., $\frac{3}{3}$, $\frac{8}{8}$), l’expression **fraction-unité** est utilisée. Toutefois, il ne s’agit pas d’un terme que les élèves doivent maîtriser.

![Image de fractions](image.png)
Expliquer qu’on peut aussi représenter une quantité supérieure au tout à l’aide d’un **nombre fractionnaire**. Préciser que $1\frac{1}{4}$ se lit « un et un quart », que le chiffre 1 représente le nombre de tout et que la fraction $\frac{1}{4}$ représente la partie fractionnaire d’un tout équivalent. Dans cette situation, l’élève a donc mangé, au total, une pizza entière ($\frac{4}{4}$ de pizza) et $\frac{1}{4}$ d’une autre de la même taille.

Spéciﬁer que la fraction impropre $\frac{5}{4}$ et le nombre fractionnaire $1\frac{1}{4}$ sont deux façons de représenter une même quantité. À ce stade, il est important de simplement présenter les types de nombres sans insister sur leurs liens puisque les élèves les exploreront un peu plus loin dans cette situation d’apprentissage.

Faire un bref retour sur le concept de **fractions équivalentes** en précisant qu’il s’agit aussi de façons différentes de représenter une même quantité. Par exemple, mentionner que $\frac{2}{4}$ de sandwich est l’équivalent de $\frac{1}{2}$ de sandwich, que $\frac{1}{3}$ de sandwich est l’équivalent de $\frac{2}{6}$ ou de $\frac{4}{12}$ de sandwich et démontrer comment on peut conﬁrmer qu’elles représentent bien une quantité équivalente.

Projeter l’annexe 5.1A (**Pique-nique scolaire**), lire la mise en situation et expliquer la tâche à effectuer, soit d’établir, à l’aide de fractions impropre et de nombres fractionnaires, la quantité qu’a reçue chaque membre de chaque groupe afin de déterminer si la répartition des sandwichs était équitable.

S’assurer que les élèves ont bien compris la tâche en posant des questions telles que :

– « Qui peut expliquer la situation? Qu’est-il arrivé lors de ce pique-nique? »
– « Pourquoi pense-t-on que chaque élève n’a pas reçu la même quantité? »
– « Qui peut expliquer dans ses propres mots la tâche à effectuer? »
– « Qu’est-ce qu’un nombre fractionnaire? »
– « Qu’est-ce qu’une fraction impropre? »
PENDANT L’APPRENTISSAGE (EXPLORATION)

Grouper les élèves par deux et leur distribuer une copie de l’annexe 5.1A. Leur demander d’accomplir la tâche en utilisant les stratégies de leur choix.

Allouer suffisamment de temps pour permettre aux élèves de discuter du problème et de le résoudre. Circuler et observer les stratégies utilisées. Intervenir au besoin afin d’aider certaines équipes à cheminer, sans toutefois leur montrer comment transformer en fraction impropre une quantité exprimée par un nombre fractionnaire et inversement.

Inviter les élèves à laisser des traces de leur raisonnement et à inscrire près de leurs calculs et de leurs illustrations, le numéro de l’énoncé correspondant.

L’annexe 5.2A présente des éléments de solution.

Généralement, afin d’accomplir la tâche, les élèves illustrent d’abord chaque énoncé de manière à représenter la quantité correspondante. Cette quantité est ensuite exprimée symboliquement par une fraction impropre, puis par un nombre fractionnaire. Leur stratégie se raffine au fur et à mesure qu’ils cheminent dans la situation d’apprentissage et qu’ils développent le sens de quantité représentée par la fraction impropre et par le nombre fractionnaire. Puisque la comparaison de quantités est reliée à l’équivalence, ils doivent aussi reconnaître que certains énoncés mènent à l’utilisation de fractions équivalentes (p. ex., \(1 \frac{4}{6} = 1 \frac{2}{3}\)).
Après la lecture de l’énoncé 2, une équipe tente de déterminer le nombre de personnes qu’il y a dans le groupe au lieu de chercher la quantité de sandwiches reçue.

<table>
<thead>
<tr>
<th>Observations possibles</th>
<th>Interventions possibles</th>
</tr>
</thead>
</table>
| Après la lecture de l’énoncé 2, une équipe tente de déterminer le nombre de personnes qu’il y a dans le groupe au lieu de chercher la quantité de sandwiches reçue. | Poser des questions telles que :
– « Que devez-vous déterminer? Pour cela, est-il nécessaire de connaître le nombre de personnes qui constituent le groupe? » |
| Une équipe ne peut pas comparer les situations équivalentes puisqu’elle ne remarque pas que \(\frac{4}{6} = \frac{2}{3} \). | Poser des questions telles que :
– « Est-ce possible de représenter une même quantité d’une autre façon? » (Oui, en déterminant des fractions équivalentes.)
– « Y a-t-il des fractions équivalentes dans les divers groupes? » |
| Une équipe représente l’énoncé 1 comme la fraction d’un tout, alors que la situation correspond davantage à la fraction d’un ensemble. De plus, elle ignore comment diviser les 4 sandwiches qui restent. | Poser des questions telles que :
– « Selon votre modèle, combien de sandwiches chaque élève a-t-il? » (1 sandwich)
– « Il en reste 4. S’il s’agissait de vrais sandwiches, que feriez-vous? » (Les couper en morceaux.)
– « Alors pouvez-vous représenter cette situation avec un dessin? » |

Lorsque les élèves ont presque terminé la première partie du travail, distribuer à chaque équipe l’annexe 5.1B. Préciser que la première partie leur a permis d’explorer les nombres fractionnaires et les fractions impropres et que cette deuxième partie leur permettra d’approfondir leur compréhension de ces concepts.

Suggérer aux élèves d’examiner leurs représentations illustrées dans la première partie pour déterminer des calculs possibles afin de résoudre les problèmes plutôt que d’illustrer l’énoncé. Ajouter qu’ils peuvent avoir recours à l’illustration si nécessaire.

Note : Il s’agit de leur permettre de cheminer de la représentation semi-concrète vers le raisonnement qui sous-tend l’opération mathématique. Toutefois, il ne s’agit pas de présenter l’algorithme ou les étapes à suivre, mais bien d’amener les élèves à établir un lien entre le sens du problème, les nombres en cause et le raisonnement qu’ils impliquent. En ce sens, l’annexe 5.2B présente des éléments de solution.
Circuler, observer et choisir les équipes qui présenteront lors de l’échange mathématique. Les cibler en fonction des forces et des faiblesses de leurs stratégies.

Une fois les tâches complétées, assigner un ou deux problèmes de la situation d’apprentissage par équipe, leur distribuer des grandes feuilles et des marqueurs et leur allouer suffisamment de temps pour se préparer afin de participer pleinement à l’échange mathématique. Préciser qu’ils doivent présenter les raisonnements ou les stratégies utilisées pour résoudre le problème assigné.

APRÈS L’APPRENTISSAGE (OBJECTIVATION/ÉCHANGE MATHEMATIQUE)

Inviter les équipes choisies à présenter leur démarche. S’assurer que chacune identifie la question ou l’énoncé présenté en mentionnant son numéro, en lisant le texte ou en le transcrivant au tableau. Inviter les élèves à intervenir et à ajouter des commentaires.
Animer l’échange en posant des questions. Par exemple :

– « Qui peut expliquer la démarche de cette équipe? »

– « Est-ce que d’autres équipes ont utilisé cette stratégie ou une stratégie similaire? »

– « Ces deux équipes expriment des réponses différentes pour le même problème. Comment est-ce possible? » (Faire ressortir l’équivalence des diverses représentations : les fractions équivalentes ainsi que l’équivalence entre le nombre fractionnaire et la fraction impropre.)

– « Pour résoudre le problème de l’énoncé 1, pourquoi ont-ils divisé par 6? »

– « Comment avez-vous procédé pour trouver la quantité du groupe d’Abdul même si on ne mentionnait pas le nombre de personnes qui le constituaient? »

– « Qu’entendent-ils par “nous avons fait la division”, alors qu’on parle de fraction? »

– « Pourquoi dites-vous que $1 \frac{4}{6}$ est équivalent à $1 \frac{2}{3}$? »

– « Certains groupes parlent surtout de sixièmes alors que d’autres réfèrent à des tiers. Quelle est la différence? »

– « Afin de résoudre le problème de cantaloups, pourquoi parlez-vous de multiplication, de division et de reste? »

– « Quelle est la différence entre l’énoncé d’Amon (Chaque membre du groupe a reçu cinq tiers de sandwich.) et celui d’Abdul (C’était délicieux. Il y avait 8 sandwichs pour Jean, Pierre et moi.)? » [Faire ressortir que le premier énoncé présente la fraction comme partie d’un tout ($\frac{5}{3}$ de sandwich) alors que le second présente une situation de partage (8 sandwichs pour 3 personnes : donc $8 \div 3$ peut être représenté par $\frac{8}{3}$).]
Encourager les élèves à utiliser des arguments clairs, un vocabulaire précis et des termes de causalité. L’annexe 5.3 (*Explications d’élèves*) fournit des exemples de raisonnements d’élèves, d’arguments mathématiques et de stratégies de résolution.

Faire ressortir des stratégies efficaces de conversion d’une fraction impropre en un nombre fractionnaire et inversement, en établissant des liens entre les représentations semi-concrètes et la signification des nombres qui les composent (les touts, la partie fractionnaire, la division, le reste). Il est plus important pour les élèves de comprendre le sens des nombres et des opérations effectuées que de mémoriser les étapes à suivre.

ADAPTATIONS

L’activité peut être modifiée pour répondre aux différents besoins des élèves.

<table>
<thead>
<tr>
<th>Pour faciliter la tâche</th>
<th>Pour enrichir la tâche</th>
</tr>
</thead>
<tbody>
<tr>
<td>• expliquer les énoncés pour faciliter la recherche des nombres fractionnaires et des fractions impropre$\frac{5}{4}$;</td>
<td>• inviter les élèves à modifier les quantités dans les énoncés afin de faire en sorte que chaque élève reçoive la même quantité;</td>
</tr>
<tr>
<td>• utiliser seulement les énoncés qui traitent des tiers (énoncés 2, 3, 5 et 7) de manière à éliminer la difficulté engendrée par les fractions équivalentes.</td>
<td>• inviter les élèves à rédiger d’autres énoncés et à déterminer les quantités qui y sont rattachées.</td>
</tr>
</tbody>
</table>

SUIVI À LA MAISON

À la maison, les élèves peuvent utiliser des représentations concrètes et semi-concrètes pour résoudre un ou deux problèmes reliés aux nombres fractionnaires et aux fractions impropre$\frac{5}{4}$$. Voici quelques exemples de problèmes.

1. Si le rectangle ci-dessous correspond aux $\frac{5}{4}$ d’un tout, dessine le tout.
2. Pour s'entraîner, Pierre parcourt à plusieurs reprises le quart du trajet prévu pour une course à bicyclette. Il parcourt à sept reprises le quart du trajet. L'odomètre installé sur sa bicyclette indique qu'il a parcouru 14 km au total. Quelle est la longueur du trajet de la course?

3. Sachant que sur $1\frac{2}{3}$ feuille de gommettes il y a 35 gommettes, combien y a-t-il de gommettes sur 1 feuille?

4. J'ai trois petites bandes de papier de même longueur. Lorsque je place bout à bout deux bandes entières et $\frac{2}{3}$ de la troisième, j'obtiens une grande bande de papier mesurant 240 cm. Quelle est la longueur d'une des petites bandes?

5. Après la fête, il reste deux gâteaux rectangulaires entiers et une partie d'un troisième. Quelle quantité de gâteaux reste-t-il?

ACTIVITÉ SUPPLÉMENTAIRE - 1

Les nombres fractionnaires et les fractions impropres
Grouper les élèves par deux ou trois et leur remettre des mosaïques géométriques. Présenter les mosaïques en identifiant l'hexagone comme étant le tout. Amener les élèves à reconnaître que le trapèze rouge équivaut à $\frac{1}{2}$ de l'hexagone, le losange bleu à $\frac{1}{3}$ de l'hexagone et le triangle vert à $\frac{1}{6}$ de l'hexagone.
Dans un premier temps, demander aux élèves de représenter $\frac{16}{3}$ d’hexagones à l’aide de mosaïques géométriques. Puisque la fraction impropre est en tiers et que le losange représente $\frac{1}{3}$ du tout, les élèves devraient choisir 16 losanges.

Inviter les élèves à regrouper les losanges pour former des touts. Ainsi, les élèves peuvent déterminer le nombre fractionnaire correspondant à la fraction impropre donnée.

Conclure en soulignant que la fraction impropre donnée ($\frac{16}{3}$) et le nombre fractionnaire déterminé ($5\frac{1}{3}$) représentent une même quantité.

En suivant la même démarche, explorer d’autres équivalences (p. ex., $\frac{15}{2} = 6\frac{1}{2}$, $\frac{27}{6} = 4\frac{3}{6}$) avec les élèves. Après quelques exemples, leur demander d’examiner attentivement le raisonnement utilisé afin de déterminer une stratégie qui ne nécessite pas de matériel concret.

Dans un deuxième temps, demander aux élèves de représenter $3\frac{5}{6}$ hexagones à l’aide de mosaïques géométriques. Afin de représenter le nombre fractionnaire donné, les élèves devraient choisir 3 hexagones et 5 triangles.

Ensuite, inviter les élèves à fractionner les touts. Ainsi, les élèves peuvent alors déterminer la fraction impropre correspondant au nombre fractionnaire donné.
Conclure en soulignant que le nombre fractionnaire donné ($3\frac{5}{6}$) et la fraction impropre déterminée ($\frac{23}{6}$) représentent une même quantité.

En suivant la même démarche, explorer d’autres équivalences (p. ex., $7\frac{1}{2} = \frac{15}{2}$; $3\frac{2}{3} = \frac{11}{3}$) avec les élèves. Après quelques exemples, leur demander d’examiner attentivement le raisonnement utilisé afin de déterminer une stratégie qui ne nécessite pas de matériel concret.

Note : Cette activité peut être réalisée avec d’autres types de matériel de manipulation (p. ex., réglettes Cuisenaires, cubes de couleur). De plus, pour approfondir la compréhension de la relation entre une fraction et son tout, le tout peut être modifié; par exemple, si le tout correspond à 2 hexagones, le triangle vert équivaut alors à $\frac{1}{12}$ du tout, le losange bleu à $\frac{1}{6}$ du tout et le trapèze rouge à $\frac{1}{4}$ du tout.

Activité supplémentaire - 2

La comparaison de fractions

Écrire au tableau un ensemble de fractions entre 0 et 2 (p. ex., $\frac{5}{6}$, $\frac{5}{8}$, $\frac{1}{4}$, $\frac{5}{9}$, $\frac{2}{13}$, $\frac{3}{14}$, $\frac{1}{2}$, $\frac{3}{2}$).

Inviter les élèves à classer ces nombres ainsi : ceux qui sont près de 0, ceux qui sont près de $\frac{1}{2}$, ceux qui sont près de 1 et ceux qui sont près de 2. Ensuite, en s’attardant aux fractions qui sont près de $\frac{1}{2}$, leur demander de désigner celles qui sont supérieures à $\frac{1}{2}$ et celles qui lui sont inférieures.

Dessiner ensuite une droite numérique en situant les nombres 0, $\frac{1}{2}$, 1, $1\frac{1}{2}$ et 2. Puis inviter des élèves à venir situer les nombres écrits au tableau sur cette droite numérique en expliquant leur choix.

```
0  \frac{1}{2}  1  \frac{3}{2}  2
```

Refaire l’exercice en utilisant d’autres critères de classement (p. ex., entre 0 et 1, entre 1 et 2) ou en utilisant d’autres nombres.
ACTIVITÉ SUPPLÉMENTAIRE - 3

En ordre

Grouper les élèves par quatre. Remettre à chaque équipe une copie de l’annexe 5.4 (Fractions) et faire remarquer que la partie ombrée représente une fraction de la bande. Leur demander de découper entre les bandes de façon à obtenir un ensemble de bandes, chacune accompagnée de la fraction correspondante.

Exemple

| 3/8 |

Spécifier ensuite que leur tâche consiste à placer les fractions en ordre croissant (de la plus petite partie à la plus grande).

Circuler et questionner les élèves afin de vérifier leur compréhension. Poser des questions telles que :

- « Pourquoi avez-vous placé cette fraction à cet endroit? »
- « Comment les nombres au numérateur et au dénominateur vous aident-ils à placer les fractions en ordre? »
- « Certaines fractions représentent la même quantité. Qu’est-ce que cela signifie? Comment avez-vous su où les placer? Comment pouvez-vous justifier qu’elles soient équivalentes? »

Lorsque la tâche est complétée, faire un échange mathématique en mettant l’accent sur les stratégies utilisées afin de déterminer l’ordre des fractions.

Ensuite, inviter les élèves à observer des fractions unitaires (p. ex., 1/2, 1/3, 1/4, 1/6, 1/8, 1/9, 1/12), plus particulièrement leur numérateur et leur dénominateur afin de faire ressortir que lorsque des fractions ont le même numérateur, celle qui a le plus grand dénominateur représente une part plus petite.

Puis, les inviter à comparer toutes les fractions ayant un même dénominateur (p. ex., 1/8, 2/8, 3/8...) afin de faire ressortir que lorsque des fractions ont le même dénominateur, celle qui a le plus grand numérateur représente une part plus grande.

Finalement, les inviter à analyser des fractions équivalentes afin de reconnaître la relation de proportionnalité (voir Fractions équivalentes, p. 50-53).
Pique-nique scolaire

Partie 1

Il y a quelques années de cela, lors d’un pique-nique scolaire, des sandwiches avaient été distribués au hasard. Chaque groupe d’élèves avait alors reçu un certain nombre de sandwiches qu’ils devaient ensuite se partager également. Une enquête auprès des groupes avait été menée afin de vérifier la quantité de sandwiches que chaque élève avait reçue. Les réponses recueillies sont résumées dans le tableau ci-dessous.

Déterminer la quantité de sandwiches qu’a reçue chaque membre de chaque groupe et exprimer cette quantité à l’aide d’une fraction impropre et d’un nombre fractionnaire.

<table>
<thead>
<tr>
<th>Groupe</th>
<th>Énoncé</th>
<th>Quantité de sandwiches par élève</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Fraction impropre</td>
</tr>
<tr>
<td>1. Mélanie</td>
<td>Pour les 6 membres du groupe, nous avons reçu 10 sandwiches.</td>
<td></td>
</tr>
<tr>
<td>2. Amon</td>
<td>Chaque membre du groupe a reçu cinq tiers de sandwich.</td>
<td></td>
</tr>
<tr>
<td>3. Abdul</td>
<td>C’était délicieux. Il y avait 8 sandwiches pour Jean, Pierre et moi.</td>
<td></td>
</tr>
<tr>
<td>4. John</td>
<td>Les 9 membres de notre groupe se sont partagé également 15 sandwiches.</td>
<td></td>
</tr>
<tr>
<td>5. Wue</td>
<td>Tous les membres de notre groupe ont reçu $3\frac{2}{3}$ sandwiches.</td>
<td></td>
</tr>
<tr>
<td>6. Arthur</td>
<td>Nous avons séparé les sandwiches en 6 morceaux et chaque membre a reçu 16 morceaux.</td>
<td></td>
</tr>
</tbody>
</table>

Est-ce que chaque élève a reçu la même quantité de sandwiches? Expliquez votre réponse.

__
__
__
ANNEXE 5.1B

Pique-nique scolaire

Partie 2

Résoudre les problèmes suivants en tenant compte du raisonnement et des calculs que vous avez effectués dans la première partie (annexe 5.1A).

1. Des cantaloupes étaient prévus pour la collation. Nous les avons coupés en 4 morceaux égaux. Chacun des 50 élèves en a reçu 1 morceau. Combien de cantaloupes avions-nous?

2. À la fin du pique-nique, il restait 12 $\frac{2}{3}$ sandwiches. Combien de tiers de sandwich restait-il?

3. Quelques tartes étaient prévues pour le dessert. Nous avons coupé chacune en 8 morceaux égaux. Nous avions un peu plus de $\frac{60}{8}$ de tarte. Combien de tartes avions-nous?
ANNEXE 5.2A

Solutions

Pique-nique scolaire : Partie 1

<table>
<thead>
<tr>
<th>Groupe</th>
<th>Énoncé</th>
<th>Quantité de sandwiches par élève</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Fraction impropre</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Mélanie</td>
<td>Pour les 6 membres du groupe, nous avons reçu 10 sandwiches.</td>
<td>$\frac{10}{6}$ de sandwich ou $\frac{5}{3}$ de sandwich</td>
</tr>
<tr>
<td>2. Amon</td>
<td>Chaque membre du groupe a reçu cinq tiers de sandwich.</td>
<td>$\frac{5}{3}$ de sandwich ou $\frac{10}{6}$ de sandwich</td>
</tr>
<tr>
<td>3. Abdul</td>
<td>C’était délicieux. Il y avait 8 sandwiches pour Jean, Pierre et moi.</td>
<td>$\frac{8}{3}$ de sandwich ou $\frac{16}{6}$ de sandwich</td>
</tr>
<tr>
<td>4. John</td>
<td>Les 9 membres de notre groupe se sont partagé également 15 sandwiches.</td>
<td>$\frac{15}{9}$ de sandwich ou $\frac{5}{3}$ de sandwich</td>
</tr>
<tr>
<td>5. Wue</td>
<td>Tous les membres de notre groupe ont reçu $3 \frac{2}{3}$ sandwiches.</td>
<td>$\frac{11}{3}$ de sandwich ou $\frac{22}{6}$ de sandwich</td>
</tr>
<tr>
<td>6. Arthur</td>
<td>Nous avons séparé les sandwiches en 6 morceaux et chaque membre a reçu 16 morceaux.</td>
<td>$\frac{16}{6}$ de sandwich ou $\frac{8}{3}$ de sandwich</td>
</tr>
<tr>
<td>7. Hans</td>
<td>Les sandwiches étaient coupés en tiers. Nous avons reçu 8 morceaux de sandwiches chacun.</td>
<td>$\frac{8}{3}$ de sandwich ou $\frac{16}{6}$ de sandwich</td>
</tr>
</tbody>
</table>

Est-ce chaque élève a reçu la même quantité de sandwiches? Expliquez votre réponse.

Les élèves n’ont pas tous reçu la même quantité de sandwiches. Dans les groupes 1, 2 et 4, chaque élève a reçu $1 \frac{2}{3}$ sandwich. Chaque membre des groupes 3, 6 et 7 a reçu $2 \frac{2}{3}$ sandwiches, alors que chaque élève du groupe 5 en a reçu $3 \frac{2}{3}$.

Situations d’apprentissage
ANNEXE 5.2B

Solutions

Pique-nique scolaire : Partie 2

<table>
<thead>
<tr>
<th>Question</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Des cantaloups étaient prévus pour la collation. Nous les avons coupés en 4 morceaux égaux. Chacun des 50 élèves en a reçu 1 morceau. Combien de cantaloups avions-nous?</td>
<td>50 morceaux de un quart de cantaloup = (\frac{50}{4} = \frac{125}{4}) Il y avait donc au moins 13 cantaloups.</td>
</tr>
<tr>
<td>2. À la fin du pique-nique, il restait 12 (\frac{2}{3}) sandwiches. Combien de tiers de sandwich restait-il?</td>
<td>12 (\frac{2}{3} = \frac{36}{3} + \frac{2}{3} = \frac{38}{3}) Il restait 38 tiers ((\frac{38}{3})) de sandwich.</td>
</tr>
<tr>
<td>3. Quelques tартes étaient prévues pour le dessert. Nous avons coupé chacune en 8 morceaux égaux. Nous avons un peu plus de (\frac{60}{8}) de tarte. Combien de tартes avions-nous?</td>
<td>Un peu plus de (\frac{60}{8} =) un peu plus que (\frac{56}{8} + \frac{4}{8} =) un peu plus que (\frac{7}{2}) ou (3 \frac{1}{2}). Il y avait donc 8 tартes.</td>
</tr>
</tbody>
</table>
ANNEXE 5.3

Explications d’élèves

Partie 1

Énoncé 1. Pour les 6 membres du groupe, nous avons reçu 10 sandwiches.

- Par un dessin, nous avons déterminé que chaque membre du groupe recevait 1 sandwich et $\frac{1}{6}$ de chacun des autres sandwiches, donc $1\frac{4}{6}$ sandwich. Puisqu’un entier équivaut à $\frac{6}{6}$, alors $1\frac{4}{6}$, c’est $\frac{6}{6} + \frac{4}{6}$. Donc $1\frac{4}{6}$ équivaut à $10\frac{6}{6}$.

- Chaque élève a reçu 1 sandwich, puis $\frac{1}{2}$ de sandwich et enfin, $\frac{1}{6}$ de sandwich, donc $1 + \frac{1}{2} + \frac{1}{6}$. Mais on devait répondre par une seule fraction; nous avons alors remarqué que $\frac{1}{2}$ équivaut à $\frac{3}{6}$. Donc, chaque élève a reçu $1\frac{4}{6}$ sandwich.

Énoncé 2. Chaque membre du groupe a reçu cinq tiers de sandwich.

- Chaque élève a reçu $\frac{5}{3}$ de sandwich. Puisque 3 morceaux (tiers) valent un tout et qu’il y a $\frac{5}{3}$ alors, il y a un entier et 2 morceaux, donc $\frac{5}{3} = 1\frac{2}{3}$.

Énoncé 3. C’était délicieux. Il y avait 8 sandwiches pour Jean, Pierre et moi.

- Par un dessin, nous avons déterminé que chaque personne a reçu 2 sandwiches. Ensuite, nous avons partagé en 3 les 2 sandwiches qui restaient. Donc, chaque élève a reçu $2\frac{2}{3}$ sandwiches.

- Nous avons séparé en 3 morceaux chacun des 8 sandwiches (donc $\frac{8}{3}$ de sandwich) puis nous avons regroupé les morceaux, obtenant ainsi $2\frac{2}{3}$ sandwiches.
ANNEXE 5.3 (suite)

Énoncé 4. Les 9 membres de notre groupe se sont partagé également 15 sandwiches.

- En séparant les sandwiches en 9 morceaux, nous avons constaté que chaque élève recevait 15 morceaux ou $\frac{15}{9}$ de sandwich, ce qui équivaut à $1 \frac{6}{9}$ sandwich. En regardant un sandwich séparé en 9 morceaux, nous avons remarqué que $\frac{6}{9}$ équivaut à $\frac{2}{3}$. Alors, $\frac{15}{9}$ de sandwich est égal à $1 \frac{2}{3}$.

Énoncé 5. Tous les membres de notre groupe ont reçu $3 \frac{2}{3}$ sandwiches.

- $3 \frac{2}{3} = \frac{11}{3}$ puisque 3 entiers équivalent à 3×3 tiers, donc $\frac{9}{3}$ qu’on ajoute au $\frac{2}{3}$.

- Chaque élève a donc reçu $\frac{16}{6}$ de sandwich, ce qui équivaut à $2 \frac{4}{6}$ ou à $2 \frac{2}{3}$ sandwiches.

- Chaque membre a reçu 8 morceaux. Il s’agissait de tiers de sandwich, alors chacun a reçu $\frac{8}{3}$ de sandwich. Puisque $\frac{6}{3}$ correspondent à 2 entiers, $\frac{8}{3}$ équivalent à $2 \frac{2}{3}$ sandwiches.

Partie 2

Combien de cantaloups avions-nous?

- Nous avons fait des groupes de 4 puisque chaque tout (cantaloup) est séparé en 4 parties égales. Alors, chaque groupe de 4 morceaux (quarts) représente un cantaloup. Donc, $50 \div 4 = 12$ reste 2, soit $12 \frac{2}{4}$ cantaloups. Au début, il y avait donc 13 cantaloups.
ANNEXE 5.3 (suite)

Question 2. À la fin du pique-nique, il restait $12\frac{2}{3}$ sandwichs. Combien de tiers de sandwich restait-il?

- Dans le problème, il est question d’entiers et de tiers. Alors, nous avons déterminé combien de tiers contenaient 12 entiers. Puisque chaque tout équivaut à $\frac{3}{3}$, 12 entiers sont équivalents à $\frac{36}{3}$. Puisqu’il reste aussi $\frac{2}{3}$ d’un autre sandwich, il reste donc $\frac{36}{3}$ plus $\frac{2}{3}$. Alors, à la fin du pique-nique, il restait $\frac{38}{3}$ de sandwich.

\[
12 \times 3 = 36, \text{ soit } 36 \text{ tiers} \quad \quad \quad 36 \text{ tiers} + 2 \text{ tiers} = 38 \text{ tiers}
\]

- Nous avons réalisé que chaque entier correspond à $\frac{3}{3}$, (1 entier = $\frac{3}{3}$). En appliquant cette relation à d’autres entiers, nous avons conclu que 12 entiers correspondent à $\frac{36}{3}$.

Note : Dans cette démarche, il est intéressant de remarquer que les élèves ont commencé à développer un raisonnement proportionnel. Pour plus de renseignements à ce sujet, voir dans le fascicule 1 du présent guide Relations de proportionnalité (p. 49-54).

Question 3. Quelques tartes étaient prévues pour le dessert. Nous avons coupé chacune en 8 morceaux égaux. Nous avions un peu plus de $\frac{60}{8}$ de tarte. Combien de tartes avions-nous?

- Puisque $\frac{6}{8}$ forment un tout, alors chaque $\frac{6}{8}$ correspond à une tarte. Nous avons donc divisé 60 par 8 ($60 \div 8 = 7$ reste 4), obtenant ainsi $7\frac{4}{8}$ ou $7\frac{1}{2}$. Nous avions donc au moins 8 tartes. En comptant par 8 (8, 16… 64), nous aurions obtenu le même résultat.
ANNEXE 5.4

Fractions

\(\frac{1}{2} \)

\(\frac{2}{2} \)

\(\frac{1}{3} \)

\(\frac{2}{3} \)

\(\frac{1}{4} \)

\(\frac{2}{4} \)

\(\frac{3}{4} \)

\(\frac{1}{6} \)

\(\frac{2}{6} \)

\(\frac{3}{6} \)
ANNEXE 5.4 (suite)
ANNEXE 5.4 (suite)

\[
\begin{array}{c}
\frac{6}{9} \\
\frac{1}{12} \\
\frac{2}{12} \\
\frac{3}{12} \\
\frac{4}{12} \\
\frac{6}{12} \\
\frac{8}{12} \\
\frac{9}{12} \\
\frac{11}{12}
\end{array}
\]
Les olympiades scolaires

GRANDE IDÉE : SENS DU NOMBRE

SOMMAIRE
Dans cette situation d’apprentissage, les élèves explorent, dans le cadre de la planification d’olympiades scolaires, la multiplication d’une fraction par un nombre naturel.

INTENTION PÉDAGOGIQUE
Cette situation d’apprentissage a pour but d’amener les élèves :

- à reconnaître des situations de multiplication d’une fraction par un nombre naturel (p. ex., $16 \times \frac{3}{4}$);
- à développer des stratégies personnelles afin d’effectuer des multiplications d’une fraction par un nombre naturel;
- à développer des stratégies de résolution de problèmes.

ATTENTES ET CONTENUS D’APPRENTISSAGE

ATTENTES
L’élève doit pouvoir :

- identifier et représenter les nombres naturels au-delà de 1 000 000, les nombres fractionnaires et les nombres décimaux jusqu’aux millièmes dans divers contextes;
- résoudre des problèmes reliés aux quatre opérations étudiées en utilisant diverses stratégies ou des algorithmes personnels.

CONTENUS D’APPRENTISSAGE
L’élève doit :

- multiplier et diviser une fraction par un nombre naturel à l’aide de diverses stratégies (p. ex., matériel concret, dessins, tableau, droite numérique);
- expliquer les stratégies utilisées ainsi que la démarche effectuée pour résoudre divers problèmes comportant des nombres naturels, des nombres décimaux ou des fractions.

Matériel
- transparent de l’annexe 6.1
- annexes 6.2 et 6.3 (1 copie par équipe)
- grandes feuilles de papier (2 par équipe)
- marqueurs

Durée approximative de la situation d’apprentissage : **75 minutes**
CONTEXTE

Au cours des années précédentes, les élèves ont développé leur compréhension du concept de fraction en tant que partie d’un tout et en tant que division. Ils ont établi des relations entre diverses quantités représentées par des fractions propres, des fractions impropre, des fractions équivalentes, des nombres naturels, des nombres fractionnaires et des nombres décimaux. En 6e année, les élèves commencent à résoudre des problèmes qui nécessitent l’application d’opérations avec des fractions.

PRÉALABLES

La présente situation d’apprentissage permet aux élèves de résoudre des problèmes qui font appel à la multiplication d’une fraction par un nombre naturel.

Pour être en mesure de réaliser cette situation d’apprentissage, les élèves doivent :

- pouvoir reconnaître et représenter des fractions propres et des fractions impropre;
- comprendre diverses stratégies d’addition de fractions ayant un dénominateur commun.

VOCABULAIRE MATHÉMATIQUE

Fraction, nombre fractionnaire, fraction impropre, numérateur, dénominateur, tout, nombre entier, quotient, multiplication, addition.

AVANT L’APPRENTISSAGE (MISE EN TRAIN)

Revoir d’abord l’addition de fractions en présentant la situation suivante aux élèves :

Nous voulons organiser des olympiades pour les élèves de l’école. L’une des épreuves, la course d’endurance, nécessite que vous vous entraîniez à courir au cours des prochaines semaines. Comme vous devez développer progressivement votre endurance, vous ne parcourrez pas toute la distance dès la première semaine.

Pendant la première semaine, vous parcourrez seulement $\frac{3}{12}$ de la distance. Puis, d’une semaine à l’autre, vous parcourrez $\frac{2}{12}$ de la distance de plus. Quelle partie du trajet parcourrez-vous pendant la deuxième semaine d’entraînement? Au cours de quelle semaine parcourrez-vous le trajet complet?
Inviter les élèves à réfléchir à la situation. Écrire des équations au tableau (p. ex., \(\frac{3}{12} + \frac{2}{12} = ? \)) et discuter des stratégies qui permettent d’ajouter des fractions ayant des dénominateurs communs. En groupe, déterminer après combien de semaines ils parcourront le trajet complet. Profiter de l’occasion pour revoir les concepts de fraction propre, de fraction impropre et de nombre fractionnaire.

Faire remarquer que lorsqu’on additionne des fractions, on additionne le nombre de parties équivalentes telles que définies par le dénominateur (p. ex., des demis, des tiers, des douzièmes). Dans la présente situation, il s’agit de douzièmes du trajet : \(3 \text{ douzièmes} + 2 \text{ douzièmes} = 5 \text{ douzièmes} \).

Présenter ensuite la situation suivante :

j’ai déjà mentionné la possibilité qu’il y ait des olympiades cette année à l’école. Évidemment, pour que cette activité ait lieu, nous devons la planifier.

Selon vous, quels éléments devons-nous prendre en considération pour bien organiser cette journée?

Noter certaines des suggestions des élèves (p. ex., date, emplacement, nombre d’équipes, participants, épreuves, fonctionnement, surveillants et équipement).

_Note : _Cette étape a pour but de susciter l’intérêt des élèves afin de les inciter à participer activement à la situation d’apprentissage. La prochaine étape leur permet de se familiariser avec le schéma d’un circuit.

Poursuivre en disant :

Vous avez identifié plusieurs éléments importants et il y en a bien d’autres.

Nous n’en sommes qu’à l’étape de la planification des olympiades. Il n’est pas certain qu’elles auront lieu. Toutefois, si la planification est solide, le projet pourrait être mené à terme sous une forme quelconque. Nous avons besoin de votre aide pour l’organisation des olympiades. Aujourd’hui, nous considérerons certains des éléments pour lesquels des décisions ont été prises.

Lors des olympiades, les épreuves seront réparties dans différentes stations. Les équipes, préalablement formées, circuleront d’une station à l’autre. Chaque station comportera de une à trois épreuves auxquelles chaque élève pourra participer.
Projeter le transparent de l’annexe 6.1 (Circuit des olympiades) et poser les questions suivantes :

– « Quelles pourraient être les épreuves lors des olympiades? »
– « Quelles épreuves pourraient avoir lieu à la même station? »

Noter quelques-unes des suggestions des élèves (p. ex., la course de relais et la course de vitesse pourraient avoir lieu à la station 1; le saut en hauteur, le saut en longueur et les sauts à la perche pourraient avoir lieu à la station 7).

Finalement, expliquer aux élèves la tâche qu’ils devront accomplir :

Je vous soumets d’abord quelques questions (annexe 6.2) auxquelles vous devez répondre afin de faire progresser la planification des olympiades. Attention, si vous effectuez simplement des calculs sans réfléchir au sens des nombres, vous risquez d’obtenir des réponses erronées. Pensez à ce que représentent les nombres. Ensuite, je vous soumettrai des questions (annexe 6.3) qui vous aideront à objectiver la tâche accomplie.

En résolvant les problèmes, vous devez tenir compte des exigences que voici :

1. Il ne faut travailler qu’avec des fractions, c’est-à-dire que vous ne pouvez transformer aucune fraction en nombre décimal.
2. Le quotient de la division ne peut contenir de reste; il vous faudra donc l’exprimer en fraction.
3. La réponse doit être exprimée en nombre fractionnaire (p. ex., $2\frac{1}{4}$ km) ou en nombre entier (p. ex., 2 km) et non en fraction impropre (p. ex., $\frac{9}{4}$ km) ou en nombre décimal (p. ex., 2,25 km).

S’assurer que les élèves ont bien compris la tâche à accomplir en posant des questions telles que :

– « Qui peut expliquer la tâche à effectuer en ses propres mots? »
– « Qui peut résumer les trois exigences? »
– « Qu’est-ce qu’un nombre fractionnaire? »
– « Qu’est-ce qu’une fraction impropre? »
PENDANT L’APPRENTISSAGE (EXPLORATION)

Grouper les élèves par deux et leur distribuer une copie de l’annexe 6.2 (Questions de planification). Les inviter à accomplir la tâche en utilisant des stratégies de leur choix.

Allouer suffisamment de temps pour permettre aux élèves de résoudre les problèmes et d’en discuter. Leur rappeler d’examiner la vraisemblance de leur solution avant de la confirmer.

Nota: Afin de résoudre les problèmes A, B et C, les élèves reconnaîtront peut-être que la fraction est multipliée un certain nombre de fois puisque le contexte sug- gère l’utilisation répétée de la fraction. Pour déterminer le produit, les élèves utiliseront leur sens de la fraction ainsi que des représentations variées (p. ex., illustrations, suite d’additions, regroupements).

Voici les réponses aux problèmes :

<table>
<thead>
<tr>
<th>A. Le temps des activités</th>
<th>B. La course de relais (1ère, 2ème, 3ème année)</th>
<th>C. La course de relais (4ème, 5ème, 6ème année)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 × 3/4 d’une période</td>
<td>12 × 2/5 de km</td>
<td>10 × 4/5 de km</td>
</tr>
<tr>
<td>= 6 périodes</td>
<td>= 24/5 de km</td>
<td>= 40/5 de km</td>
</tr>
<tr>
<td></td>
<td>= 4 4/5 km</td>
<td>= 13 1/5 km</td>
</tr>
</tbody>
</table>

Circuler et observer les stratégies utilisées. Intervenir au besoin afin d’aider certaines équipes à cheminer, sans toutefois leur expliquer comment effectuer les calculs.
Observations possibles

| Pour résoudre le problème A, les élèves constatent qu’ils doivent multiplier, mais le font de la façon suivante : $8 \times \frac{3}{4} = \frac{24}{32}$ | Poser des questions telles que :
- « Environ combien de périodes, seront nécessaires? Plus d’une? »
- « Combien de périodes avez-vous prévues? »
- « Que signifie cette réponse : $\frac{24}{32}$ de période? » (Moins d’une période.) Est-ce vraisemblable? »
Leur demander ensuite de représenter la situation ou la multiplication par un modèle.
|
| Pour résoudre le problème A, les élèves utilisent des minutes plutôt que des périodes. Puisqu’une période compte 50 minutes, ils cherchent à représenter $\frac{3}{4}$ de 50 minutes 8 fois. | Poser des questions telles que :
- « Si on voulait organiser des olympiades dans une école dont les périodes ne sont pas de 50 minutes, comment pourrions-nous utiliser les données du problème? »
- « Examinez le schéma du circuit. Pendant combien de périodes les élèves resteraient-ils à la station 1? à la station 2? à la station 3? … »
|

Lorsque les élèves ont fini de résoudre les trois problèmes, leur donner une copie de l’annexe 6.3 (*Objectivation*) et leur demander de répondre aux questions.

Note : Le but des questions est de favoriser l’objectivation et de susciter des idées qui seront partagées lors de l’échange mathématique. Il n’est pas nécessaire que les élèves écrivent tout en détail, ils doivent surtout être en mesure de discuter. L’échange mathématique les amènera à consolider leurs idées mathématiques et à les verbaliser.
Assigner ensuite, à chacune des équipes, une des questions de planification. Leur distribuer des grandes feuilles de papier et des marqueurs afin que chacune puisse consigner la démarche suivie pour résoudre le problème. Préciser aux élèves qu’ils doivent aussi être en mesure de présenter et d’expliquer leur démarche au cours de l’échange mathématique. Leur allouer suffisamment de temps pour se préparer.

Afficher dans la classe les démarches des différentes équipes en les regroupant par question. Permettre aux élèves de circuler et d’observer celles de leurs camarades afin de voir la variété de stratégies utilisées.

APRÈS L’APPRENTISSAGE (OBJECTIVATION/ÉCHANGE MATHÉMATIQUE)

Inviter, en suivant l’ordre des questions, une ou deux équipes à présenter leur démarche pour résoudre le problème assigné. Inciter les autres élèves à commenter la présentation et à alimenter la discussion en proposant d’autres stratégies pour résoudre le problème.

Animer l’échange en posant des questions telles que :

– « Qui peut expliquer la démarche de cette équipe? »

– « Est-ce que d’autres équipes ont utilisé cette stratégie ou une stratégie similaire? »

– « En quoi cette stratégie est-elle similaire à celle d’une autre équipe? »

– « Qui peut expliquer la multiplication dans ce problème? »

– « On entend souvent que lorsqu’on multiplie, le produit obtenu est plus grand que les termes de départ. En examinant nos problèmes, est-ce vrai? Qui peut me l’expliquer? »
– « Une multiplication peut être représentée par une disposition rectangulaire. Comment pourrait-on l’utiliser pour représenter les multiplications de la situation d’apprentissage? »

La multiplication du problème A peut être représentée par la disposition rectangulaire suivante.

– « Une multiplication peut être représentée par un ensemble de groupes. Par exemple, 5 × 6 peut être interprété comme étant 5 groupes de 6 objets. Comment peut-on appliquer cette interprétation aux problèmes de la situation d’apprentissage? »

Dans le problème B, il s’agit de 12 sections de $\frac{2}{5}$ du trajet. Alors, $12 \times \frac{2}{5}$ peut être interprété comme 12 groupes de $\frac{2}{5}$ du trajet.

Faire ressortir que chaque problème fait appel à la multiplication d’une fraction par un nombre naturel, opération que l’on peut effectuer à l’aide d’une addition répétée. Établir le lien entre les représentations semi-concrètes et les gestes posés de façon à faire ressortir l’émergence d’un algorithme. Par exemple, pour effectuer $8 \times \frac{3}{4}$:

• multiplier le numérateur (3) par le nombre naturel (8), soit 8×3 quarts = 24 quarts qui correspond à la fraction impropre $\frac{24}{4}$;

• convertir la fraction impropre ($\frac{24}{4}$) en divisant le numérateur (24) par le dénominateur (4) pour déterminer la solution (6).

Encourager l’utilisation d’arguments clairs et précis ainsi que l’emploi d’un vocabulaire juste et de termes de causalité. Voici des exemples de raisonnement :

• Si dans un problème, on remarque qu’une fraction est présente un certain nombre de fois, on peut alors dire que la fraction est multipliée par ce nombre.
• Quand on multiplie une fraction par un nombre naturel, le dénominateur du produit sera le même que celui de la fraction. En effet, on a tant de fois un certain nombre de morceaux; par exemple, si on effectue $3 \times \frac{3}{4}$, la réponse se lira en quarts, car 3 fois 3 morceaux égale 9 morceaux et dans cette situation, les morceaux correspondent à des quarts, donc $\frac{9}{4}$.

• En effectuant le calcul $8 \times \frac{3}{4}$ d’une période, nous avons déterminé qu’il faudra $\frac{24}{4}$ de période. Puisque $\frac{4}{4}$ représente 1 période, il faudra alors 6 périodes ($24 \div 4$).

Terminer l’échange en présentant un problème tel que :

– « Si le problème A mentionnait qu’il y a 15 stations et que le temps alloué à chacune correspond aux $\frac{3}{5}$ d’une période, combien de périodes seraient requises? (9 périodes). Comment avez-vous pu déterminer la solution? »

ADAPTATIONS

L’activité peut être modifiée pour répondre aux différents besoins des élèves.

<table>
<thead>
<tr>
<th>Pour faciliter la tâche</th>
<th>Pour enrichir la tâche</th>
</tr>
</thead>
<tbody>
<tr>
<td>• mettre à la disposition des élèves du matériel de manipulation (p. ex., ensembles de cercles de fractions);</td>
<td></td>
</tr>
<tr>
<td>• modifier les nombres afin d’offrir des situations où les solutions sont plus simples à obtenir.</td>
<td></td>
</tr>
<tr>
<td>• modifier les nombres afin d’offrir des situations où les solutions sont plus difficiles à obtenir;</td>
<td></td>
</tr>
<tr>
<td>• poursuivre le projet des olympiades en permettant aux élèves de planifier, d’effectuer les calculs nécessaires et de prendre des décisions.</td>
<td></td>
</tr>
</tbody>
</table>
SUIVI À LA MAISON

À la maison, les élèves résolvent un ou deux problèmes de multiplication d’une fraction par un nombre naturel en utilisant deux représentations différentes, par exemple, un modèle de surface (cercle, rectangle), un modèle de longueur (droite numérique, segment de droite), une disposition rectangulaire ou un calcul. Par la suite, ils présentent leurs représentations à un membre de la famille.

Exemples

1. Serena veut créer un gâteau de noce qui nécessite l’équivalent de 7 gâteaux. Si la recette requiert $\frac{3}{4}$ de tasse de sucre pour un gâteau, combien de tasses de sucre Serena aura-t-elle besoin pour confectionner le gâteau de noce?

 \[
 (7 \times \frac{3}{4} \text{ de tasse} = \frac{21}{4} \text{ de tasse ou } 5 \frac{1}{4} \text{ tasses})
 \]

2. Jean aime bien marcher en exagérant la grandeur de ses pas. En marchant de la sorte, chaque pas lui permet de parcourir une distance de $\frac{2}{3}$ de mètre.

 Combien de mètres parcourt-il en effectuant 10 pas?

 \[
 (10 \times \frac{2}{3} \text{ de mètre} = \frac{20}{3} \text{ de mètre ou } 6 \frac{2}{3} \text{ m})
 \]

ACTIVITÉ SUPPLÉMENTAIRE - 1

La planification des olympiades : La suite

Faire un rappel de la situation d’apprentissage vécue au préalable. Préciser aux élèves qu’ils devront répondre à d’autres questions ayant trait à d’autres éléments de la planification des olympiades.

Grouper les élèves par deux et leur distribuer une copie de l’annexe 6.4 (*Autres questions de planification*). Les inviter à accomplir la tâche en utilisant des stratégies de leur choix.

Voici les réponses aux problèmes :

<table>
<thead>
<tr>
<th>A. La grande course des élèves de 6e année</th>
<th>B. La grande course du cycle primaire</th>
<th>C. La course des enseignants et des enseignantes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{3}{4}$ de 12 tours = 9 tours</td>
<td>$\frac{2}{5}$ de 12 tours = $\frac{24}{5}$ de tour = 4 $\frac{4}{5}$ tours</td>
<td>$\frac{4}{3}$ de 12 tours = $\frac{48}{3}$ de tour = 16 tours</td>
</tr>
</tbody>
</table>
Par la suite, entreprendre un échange mathématique. Faire ressortir que ces problèmes portent sur le concept de fraction d’un ensemble. Animer l’échange en posant des questions telles que :

– « Qui peut expliquer la démarche de cette équipe? »
– « Est-ce que d’autres équipes ont utilisé cette stratégie ou une stratégie similaire? »
– « En quoi cette stratégie est-elle similaire à celle d’une autre équipe? »
– « Ce groupe mentionne qu’il a divisé et ensuite qu’il a multiplié. D’où viennent cette division et cette multiplication? [Pour déterminer la fraction d’un ensemble, on sépare l’ensemble selon le dénominateur (division) et on identifie le nombre de groupes selon le numérateur (multiplication). Le contenu de cette partie représente alors la fraction recherchée de l’ensemble.]

Activité supplémentaire – 2

De la pizza… encore de la pizza

Présenter les situations suivantes et inviter quelques élèves à venir, à tour de rôle, les représenter à l’aide d’assiettes en carton ou d’illustrations :

– « Si un repas de pizza est organisé pour 3 personnes, en combien de morceaux doit-on diviser la pizza? » (En 3 morceaux.)
– « Il n’est pas certain s’il y aura 2 ou 4 personnes pour le repas. Si on doit couper la pizza à l’avance, en combien de morceaux équivalents doit-on la couper afin de s’assurer que chaque convive pourra recevoir la même part? » (En 4 morceaux.)
– « Il n’est pas certain s’il y aura 2, 4 ou 8 convives. Si on doit couper la pizza à l’avance, en combien de morceaux devrait-on la couper afin de s’assurer que chaque convive pourra recevoir la même part? » (En 8 morceaux.)
Présenter d’autres situations où le nombre de morceaux nécessaire (qui est représenté par le plus petit commun multiple) est un des nombres donnés (p. ex., s’il y a 3, 4 ou 12 invités, il faut alors partager la pizza en 12 morceaux).

Dans le cadre d’un bref échange, discuter des stratégies utilisées afin de déterminer en combien de morceaux il faut partager la pizza. Poursuivre l’activité avec des situations où le nombre de morceaux nécessaire (le plus petit commun multiple) n’est pas un des nombres; par exemple, pour un repas de pizza où l’on ne sait pas s’il y aura 2 ou 3 convives (partage en 6 morceaux), 4 ou 5 convives (partage en 20 morceaux). Amener les élèves à voir que le nombre de morceaux doit nécessairement être un multiple de ces deux nombres et qu’il s’agit du plus petit commun multiple.

Ensuite, examiner la présence des fractions équivalentes dans les situations. Par exemple, dans la situation où il est possible qu’il y ait 2 ou 3 personnes, on sépare d’avance la pizza en 6 morceaux; ainsi s’il y a seulement 2 personnes, chacune reçoit \(\frac{2}{6} \) de la pizza, qui est l’équivalent d’un morceau si la pizza avait initialement été coupée en deux \(\left(\frac{2}{6} = \frac{1}{3} \right) \). Tout comme s’il advient qu’il y ait 3 personnes, chaque personne reçoit \(\frac{2}{6} \) de la pizza, soit l’équivalent d’un morceau si la pizza avait initialement été coupée en trois \(\left(\frac{2}{6} = \frac{1}{3} \right) \).

Activité supplémentaire - 3

Partageons!

Grouper les élèves par deux. Expliquer qu’il faut souvent partager également une quantité qui n’est qu’une partie de l’entier, c’est-à-dire une fraction du tout.

Remettre deux énoncés à chaque équipe et inviter les élèves à déterminer quelle part (exprimée en fraction du tout) recevra chaque personne, selon la situation. Mettre des modèles fractionnaires (p. ex., ensemble de cercles de fractions, ensemble de languettes fractionnées) à la disposition des élèves.
<table>
<thead>
<tr>
<th>Énoncé</th>
<th>Part de chaque personne</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{2}{3}$ d’une pizza pour 2 personnes</td>
<td>$\frac{1}{3}$ d’une pizza</td>
</tr>
<tr>
<td>$\frac{3}{4}$ d’une pizza pour 2 personnes</td>
<td>$\frac{3}{8}$ d’une pizza</td>
</tr>
<tr>
<td>$\frac{3}{4}$ d’un pichet de jus pour</td>
<td>$\frac{3}{12}$ d’un pichet de jus</td>
</tr>
<tr>
<td>3 personnes</td>
<td>$\frac{1}{4}$ d’un pichet de jus</td>
</tr>
<tr>
<td>$\frac{3}{4}$ d’un pichet de jus pour</td>
<td>$\frac{3}{16}$ d’un pichet de jus</td>
</tr>
<tr>
<td>4 personnes</td>
<td></td>
</tr>
<tr>
<td>$\frac{3}{8}$ d’une longue réglisse pour</td>
<td>$\frac{3}{16}$ d’une longue réglisse</td>
</tr>
<tr>
<td>2 personnes</td>
<td></td>
</tr>
<tr>
<td>$\frac{4}{5}$ d’une longue réglisse pour</td>
<td>$\frac{4}{10}$ ou $\frac{2}{5}$ d’une longue réglisse</td>
</tr>
<tr>
<td>2 personnes</td>
<td></td>
</tr>
<tr>
<td>$\frac{4}{9}$ d’une pizza carrée pour</td>
<td>$\frac{4}{27}$ d’une pizza carrée</td>
</tr>
<tr>
<td>3 personnes</td>
<td></td>
</tr>
<tr>
<td>$\frac{4}{9}$ d’une pizza carrée pour</td>
<td>$\frac{4}{18}$ d’une pizza carrée ou $\frac{2}{9}$ d’une pizza carrée</td>
</tr>
<tr>
<td>2 personnes</td>
<td></td>
</tr>
<tr>
<td>$\frac{2}{3}$ d’un gâteau pour 4 personnes</td>
<td>$\frac{2}{12}$ ou $\frac{1}{6}$ d’un gâteau</td>
</tr>
<tr>
<td>$\frac{3}{4}$ d’un gâteau pour 4 personnes</td>
<td>$\frac{3}{16}$ d’un gâteau</td>
</tr>
</tbody>
</table>

Note : Certains élèves illustreront la situation, d’autres recourront à des équations, d’autres encore représenteront les fractions à leur plus simple expression par des fractions équivalentes. Les élèves ont souvent de la difficulté à nommer la part en fonction du tout; par exemple, en ce qui a trait à l’énoncé $\frac{3}{4}$ d’une pizza pour 2 personnes, ils reconnaissent que chaque personne reçoit 1 morceau et un demi-morceau ($3 ÷ 2$), mais ils doivent apprendre à mettre la quantité en relation avec le tout afin de reconnaître que chacune reçoit $\frac{3}{8}$ (fraction) d’une pizza (tout).

Choisir les équipes en fonction de leurs stratégies et les inviter à présenter leurs solutions. Comparer les diverses stratégies utilisées. Faire remarquer que les énoncés représentent la division d’une fraction par un nombre naturel, s’apprêtant ici au sens de partage. Pour de plus amples renseignements au sujet de la division d’une fraction par un nombre naturel, voir *Division* (p. 79-82 et 97-102).
ANNEXE 6.1

Circuit des olympiades

Station 1 → Station 2

Station 3

Station 2

Station 4

Station 7

Station 6

Station 8

Station 5
ANNEXE 6.2

Questions de planification

Afin d’aider à la planification des olympiades, répondez aux questions ci-dessous en respectant les exigences suivantes :

1. Il ne faut travailler qu’avec des fractions (aucune transformation en nombre décimal).
2. Le quotient de la division ne peut contenir de reste; il devra être exprimé en fraction.
3. La réponse doit être exprimée en nombre fractionnaire ou en nombre entier (non en fraction impropre ou en nombre décimal).

<table>
<thead>
<tr>
<th>A. Le temps des activités</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aux olympiades, les épreuves seront réparties dans 8 stations. Les participants et les participantes passeront l’équivalent de $\frac{3}{4}$ d’une période de classe à chaque station. Combien de périodes de classe seront nécessaires pour que les élèves puissent faire le tour des 8 stations?</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B. La course de relais (1ʳᵉ, 2ᵉ et 3ᵉ année)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chaque participant ou participante de la course de relais devra parcourir $\frac{2}{5}$ de km. Si chaque équipe compte 12 membres, quelle sera la distance totale à parcourir à cette course?</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C. La course de relais (4ᵉ, 5ᵉ, 6ᵉ année)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pendant la course de relais, chaque participant ou participante courra à plusieurs reprises, soit $\frac{1}{2}$ de km à 4 reprises, donc $\frac{4}{5}$ de km. Si chaque équipe compte 10 membres, quelle sera la distance totale à parcourir à cette course?</td>
<td></td>
</tr>
</tbody>
</table>
ANNEXE 6.3

Objectivation

__
__
__
__
__
__
ANNEXE 6.4

Autres questions de planification

<table>
<thead>
<tr>
<th>A. La grande course des élèves de 6e année</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>La course d’endurance, pour les élèves de 6e année, comptera 12 tours de piste. Généralement, les participants et les participantes à une telle course tiennent un rythme modéré tout au long de la course et augmentent la cadence vers la fin. On agitera un drapeau coloré afin de signaler aux coureurs et aux coureuses qu’ils ont parcouru les $\frac{3}{4}$ du trajet. Après combien de tours le drapeau devra-t-il être agité?</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B. La grande course du cycle primaire</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>La course d’endurance des élèves du cycle primaire représente $\frac{2}{5}$ des 12 tours de piste que les élèves de 6e année doivent parcourir. Combien de tours compléteront les plus jeunes élèves?</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C. La course des enseignants et des enseignantes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>La course des enseignants et des enseignantes correspondra aux $\frac{3}{4}$ des 12 tours de piste que les élèves de 6e année doivent parcourir. Combien de tours devront-ils compléter pour réussir cette épreuve?</td>
<td></td>
</tr>
</tbody>
</table>

FOSNOT, Catherine Twomey, et Maarten DOLK. 2001. *Young mathematicians at work: Constructing Multiplication and Division*, Portsmouth (NH), Heinemann, p. 29, 74, 80 et 98.

ONTARIO. MINISTÈRE DE L’ÉDUCATION. 2004a. Enseigner et apprendre les mathématiques : Rapport de la Table ronde des experts en mathématiques de la 4e à la 6e année, Toronto, le Ministère, p. 21 et 35.

ONTARIO. MINISTÈRE DE L’ÉDUCATION. 2005. Le curriculum de l’Ontario de la 1re à la 8e année – Mathématiques, Révisé, Toronto, le Ministère, p. 8, 17, 19 et 93.

VÉZINA, Nancy, et coll. 2006. 3e année : Apprentissages essentiels en lien avec le programme-cadre de mathématiques, Ottawa, CEPEO, CECLFCE et CSDCEO, p. 4.
Le ministère de l’Éducation tient à remercier les enseignants, les enseignantes et les élèves qui ont participé à la mise à l’essai des situations d’apprentissage.